
 

 

 

Date: March 29th, 2012 

 

 

 

 

  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

  

Rapise™ User Guide 
Version 1.4 
Inflectra Corporation 
 

 



About this Guide Top Previous Next

The Rapise User's Guide is divided into four sections: Getting Started; Features; Dialogs, Views, and Menus; HowTos.

Getting Started
The Getting Started section is for new Rapise users.  It has the following subsections: 

(1) An Overview of Rapise: what it's for and how to use it.
(2) Test Samples, where the sample projects included with Rapise are described.
(3) TwoDialogs Sample, a step-by-step tutorial for creating your first test with Rapise
(4) Tutorial: Record and Playback, a slightly more advanced tutorial in using Rapise to test a web page.

Features
The features of Rapise are many.  Features have been designed to make all aspects of test automation as easy as possible.

Most of the features of Rapise fall into one of five categories:
(1) Building test scripts with little or no manual scripting.
(2) Reading and interpreting results and reports.
(3) Additional features and capabilities for sophisticated testing.
(4) Writing more involved or complicated tests using scripting.
(5) Extending Rapise to learn new or extended libraries of capabilities.

Depending on the application set being tested, not all of these features are necessarily needed for every situation.

For each feature, this document attempts to present:
(1) The reason you might use a given feature.
(2) A summary of the basic value of the feature.
(3) An overview of how the feature works from the perspective of using it.
(4) At least one useful sample that demonstrates how to use the feature.

Dialogs, Views, and Menus
This section details the Rapise GUI.  Each subsection describes the function of a particular Dialog, View, or Menu.  The purpose and consequences of all buttons, options, lists, and check boxes are 
listed. 

HowTos
This section focuses on specific tasks that a Rapise user might want to accomplish.

Glossary Top Previous Next

This glossary presents a list of terms and their definitions as they are used in this guide.

AUT - Application Under Test
DOM - Document Object Model
GUI - Graphical User Interface
GWT - Google Web Toolkit
IDE - Integrated Development Environment
UI - User Interface
YUI - Yahoo! User Interface (library)

Getting Started Top Previous Next

The Getting Started section is for new Rapise users.  It has the following subsections: 

(1) An Overview of Rapise: what it's for and how to use it.
(2) Test Samples, where the sample projects included with Rapise are described.
(3) TwoDialogs Sample, a step-by-step tutorial for creating your first test with Rapise
(4) Tutorial: Record and Playback, a slightly more advanced tutorial in using Rapise to test a web page.

Overview Top Previous Next

Rapise was created to make software testing easy and manageable without being prohibitively expensive.
Rapise was made easy for software test professionals, developers and professionals concerned with quality assurance to simply and quickly write a test to cover an application, a web page, or a single 
bug to prevent regression.

Consider for a moment what it is you do to test your software today.  Most likely it has some for of user interface (UI), probably a graphic user interface (GUI).  So you will run the application , click 
around, perhaps in some way that gives you complete coverage of all the features (but probably not if it's a large application or web).  Then you will login, if appropriate, and you will fetch some data and 
modify some data, test some more controls - edit boxes, buttons, drop-down lists, links, etc.  If you have just fixed a bug then you will focus on the area of the application where the bug occurred.  You 
will enter data that causes the bug, or go through the control sequence that causes the bug.

Next time you come to fix a bug in this application, you will do the same thing again..  Once again, you will focus on the area where the bug was.

Rapise presents you with two methods for capturing specific tests, and it will keep the test as a solo test or as part of a suite of tests that help you to qualify the application for release or a more formal 
QA process.  Rapise is designed to allow the developer or the test professional to add new tests quickly and so to build up a library of tests.

There are two methods for capturing tests:

There are many methodologies with their own recommended approaches for designing testing strategies to ensure that application coverage is complete and meets the business requirements 
specification of the work being accomplished.  Inflectra in general, recommends that you create a new test for each software requirement (to track progress) and for each issue in your issue tracking 
system (to test for regressions).

To help you manage the requirements and issue tracking processes and to ensure that you have adequate test coverage, Inflectra recommend that you use Rapise with a test management system 
such as SpiraTest. That way you can maintain all your requirements, test cases and defects in a single place.

Record and playback.  In this type of test creation, you turn on the recorder and perform the actions needed to execute the test.  Each test is saved to its own directory.  A test consists of a javascript 
test script (.js), a meta-data file (*.sstest), and any number of additional supplementary scripts and data files.   The test script is automatically generated after recording; simple modifications are 
required to make the test data driven. Checkpoints can be added during recording, or manually into the script.
Object-driven learning.   Rapise considers each item on the page or within the application window to be an object.  Examples are buttons, edit boxes, links, etc.  To create a test using this technique, 
you have Rapise "learn" each control, and it will keep a miniature database of all the controls you "teach" it.  To create a test, you write a script to instruct Rapise to perform a particular action on each 
object in the prescribed order.  As any point along the way, the script you write can instruct Rapise to look inside an object and read its data and compare that value or content with what you expect it o 
be.

Page 1 of 783/29/2012



Once you have created the test, you can playback your test from within Rapise, run it from the command-line or execute it remotely using RapiseLauncher in conjunction with SpiraTest.  A report
detailing the outcome of each step of the test will be automatically generated.

Recording, playback, the report, and the Rapise engine are all customizable.

Samples Index Top Previous Next

Rapise includes several sample tests that you are free to read, modify, copy and use.  They are located in: RapiseDirectory\Samples.  Unless you specified otherwise, RapiseDirectory should be: 
C:\Program Files\Inflectra\Rapise.

The sample tests are described below.

AnalogRecorder
This sample demonstrates Analog Recording. 

CrossBrowser
A simple recorded test is modified to run on both Firefox and Internet Explorer.  Read the Cross Browser Testing HowTo for more details.

DotNet20
This sample tests a .NET 2.0 application. This sample demonstrates the capabilities of the .NET library. The application under test contains various standard GUI controls, such as: button, edit, tree, 
combo box, menu, etc.

Java
This sample tests a Java AWT/SWING application. This sample demonstrates the capabilities of the Java library. The application under test contains various standard GUI controls, such as: button, edit, 
tree, combo box, menu, etc.

Library Information System
These tests can be used to test the sample library information system web application hosted at http://www.libraryinformationsystem.net. This is the same sample application used by SpiraTest and 
illustrates how you can use SpiraTest to manage and execute automated Rapise tests. A copy of these tests is also available in new installations of SpiraTest v3.2+. 

Managed
This sample tests a .NET 2.0 application. This sample demonstrates the capabilities of the Managed library. The application under test contains various standard GUI controls, such as: button, edit, tree, 
combo box, grid, listbox, listview, menu, etc.

SimulatedObject
This sample opens MS Paint and draws on its canvas. It uses Simulated Objects and several related methods: DoMouseMove(X,Y), DoLButtonDown(), DoLButtonUp(), and DoSendKeys(text).

SampleATM
This sample tests an MFC application. You will also learn how to organize your test script in modular form, how to launch the AUT from your test script and how to execute various actions on GUI 
controls.

UsingCustomStrings
This sample demonstrates how to integrate Rapise tests with other tools using Custom Strings. TestFinish() is used to analyze and save test results. For more details, see: Custom Strings.

UsingDLLHandlerManaged
This sample shows how to unit test managed DLLs. You'll see how to use methods CreateClassInstance() and InvokeMember().

UsingDLLHandlerUnManaged
This sample shows how to unit test unmanaged DLL code. You'll learn how to register (UserWrap.Register) and execute (UserWrap.ShellExecute) a function.

UsingImageCheckPoint
This example shows how to create image checkpoints.

UsingInclude
This sample demonstrates two ways to include external files/functions:

UsingMSAccess, UsingMSExcel, UsingMSWord
These samples demonstrate how you can work with Microsoft Word, Excel, and Access from scripts. You'll learn how to test applications that expose a COM interface.

UsingRegistry
This sample demonstrates usage of the windows registry.   The registry is queried to determine the OS (XP/2003/Vista, etc) and owner.

UsingReporting
This sample illustrates various reporting features:

UsingSpreadSheet
This example shows how you can use Excel spreadsheets to create Data-Driven tests.  This script reads test case data from an XLS spreadsheet to test Calculator.

UsingXML
This sample demonstrates how to read, modify and write XML files.

1. eval(g_helper.Include(...)): include a file with utility functions.
2. SeSRunJSScript(...): include and execute external function with its own object map.

1. Regular reporting (Tester.Assert, Tester.Message)
2. Custom attributes (Tester.SetReportAttribute, Tester.ResetReportAttribute)
3. Stacked attributes (Tester.PushReportAttribute, Tester.PopReportAttribute)
4. Nested Tests (Tester.BeginTest, Tester.EndTest)
5. Inserting Links, Text and Images into the report (tags parameter, SeSReportText, SeSReportLink, SeSReportImage)

Tutorial Top Previous Next

In this section, you will learn how to record and execute a Rapise script.  We will be using a demo application called SampleATM.  Our test will be simple.  It will log on to SampleATM, navigate to the 
main menu, and click on all of the menu options to make sure the links are working.

Go to Start > All Programs > Inflectra > Rapise.  The following window should appear.
1. Open Rapise

Page 2 of 783/29/2012



Open Internet Explorer.  You will find it in Start > All Programs > Internet Explorer. In Internet Explorer, navigate to: http://www.inflectra.com/SampleATM:

In the Rapise window, press the Record/Learn button on the Ribbon. 

The Select an Application to Record... Dialog (SAR dialog) will open. 

There are two sections to the SAR dialog.  In the bottom section, you select which Rapise library will be used during the recording session.  Because we will be recording our interactions with Internet 
Explorer, make sure that the Internet Explorer HTML library is checked.  No other libraries should be selected.  See below:

2. Open the AUT (Application Under Test)

3. The Select an Application to Record Dialog

Page 3 of 783/29/2012



In the top section of the SAR dialog, we choose which application to record. Scroll down the available applications and click once on SampleATM, so that it is highlighted.  Now, press the Select button 
near the bottom right of the dialog.

The Recording Activity Dialog (RA dialog) will appear:

The RA dialog has a grid.  As you interact with the SampleATM program, the grid will automatically populate with your actions.

Let?s begin creating the test.  On the SampleATM login page, type user@mycompany.com into the username text box.  Press the tab key.  You?ll notice that the RA dialog has changed.  Your action, 
entering a username, is listed in the grid.

The password for user user@mycompany.com is rapise.  Type the password in and then press the Sign-On button.  Two more rows should appear in the RA dialog: one to represent the password entry, 
and one to represent the button click.

You should now be on a new screen of the SampleATM application, the Main Menu:

4. Recording

Page 4 of 783/29/2012



Click the DEPOSIT button.  It is highlighted in the next screenshot:

You should now be on the Deposit page (see the below image). Click the HOME button to go back to the main menu. 

Now, click the WITHDRAW button:

You should now be on the Withdraw Funds page. Click the HOME button to go back to the main menu.

Click the TRANSFER button:

Page 5 of 783/29/2012



You should now be on the Transfer page. Click the HOME button to go back to the main menu.

Click the BALANCE button:

You should now be on the Balance page.  Click the HOME button to go back to the main menu.

At this point, there should be 11 rows in the RA dialog grid.

You are now back on the Main Menu.  Click LOGOUT (lower left).

Page 6 of 783/29/2012



To end the recording session, you can either press CTRL+3 or press the Stop button on the Record dialog.  End the recording session now.  You will see a script created from your recording session in 
the Rapise window.  Let?s save our test.  Press the Save button at the top left of the Rapise window.

Let?s execute the test we just created.  First, close Internet explorer.  Rapise will open a new instance of Internet Explorer to the correct url (SampleATM) when the test begins.

To execute the script, press the Play button at the top middle of the Rapise window.

After execution, a screen like the one below will appear.  Each row represents a step in the test. The rows with green text are steps which passed, whereas the rows with red text are the steps which 
failed. 

For more information on the report, see Automated Reporting.

5. Playback

Tutorial: TwoDialogs Sample Top Previous Next

This section outlines the usage of Rapise for testing a very simple AUT.
Please run the application now.  You will find it in the samples directory where you installed Rapise.
By default, that will be C:\Users\Public\Documents\Rapise\Samples\TwoDialogs\TwoDialogs.exe.

You will see the following:

Please run the application a few times and observe its behaviour.  If you press the OK button with the first edit box empty, the application will complain and return you to the dialog box.
If you put text in the first edit box but not the second, you will be shown a single line of text in a read-only edit box..
If you enter text in the second edit box as well as the first, pressing OK will put two lines of summary information in the read-only edit box.

An adequate testing strategy for this over-simple application might be to:
1. Put data in the first text box but not the second, and verify that the summary information is correct.
2. Press the OK button with no data in either text box, and verify that a message box is displayed.
3. Verify that if the success "Thank You" message is displayed the edit box input fields are cleared (but not the summary information).

If at this point you do not understand what the application is supposed to do, or the application is not behaving as described here, please contact support and clarify the details before proceeding.

Now, let's use Rapise to implement the first of these tests.

Step 1. Run the TwoDialogs application and leave it in its default start state.

Page 7 of 783/29/2012



Step 2.  Start Rapise and make the window a conveniently large size.  Click on the  button (top left).  Choose the first option there, "New Test."

Step 3.  Navigate to the desired path using the "..." button on the "Create New Test" dialog.
Leave the "Use Methodology" as "Basic" for now.
Press the "Create" button.

You will now see the following:

Page 8 of 783/29/2012



Step 4.  Recording the test sequence.  Press the "Record/Learn" button in either the ribbon or on the toolbar.  It has an icon like this: 
You will see an application selection dialog like the following.

Select the "Inflectra Rapise Two Dialogs Sample" entry.
Leave the library selection as "Auto."
Press the "Select" button at the bottom right.

Step 5.  Record the activity in the application.
Rapise will pause while it starts the necessary background processes and hooks into the running AUT.
Once those tasks are complete, you will see the following "Recording Activity" for "Inflectra Rapise Two Dialogs Sample" dialog:

Page 9 of 783/29/2012



The AUT will be brought to the foreground and Rapise will be minimized.
You will achieve best results in recording if you observe the following guidelines:
(1) Work slowly while recording.  Perform one action and wait for the results to be recorded in the Recording Activity dialog as a new grid line-item before going to the next item.
(2) Use the mouse to select controls and operate them.  Avoid using keyboard shortcuts and keyboard commands.

Step 6. Click in the first edit box in the TwoDialogs application.  Type a name in there.
Watch the Recording activity dialog as you operate the AUT interface.  As you press a button or fill a field, notice that the grid in the Recording activity has entries added to it.

As you take these actions, you will see the Recording Activity grid update accordingly:

For a full explanation of the controls on this dialog, refer to the reference for Recording Activity Dialog

When you have finished recording the activity for the AUT, press the "Finish" button or CTRL+3.

Note: Do not terminate the TwoDialogs application.

When you do this, the "Recording Activity" dialog will be closed and the AUT will lose focus.  Rapise will change the view to display the newly recorded script.  It will look something like the following:

Page 10 of 783/29/2012



Notice that the two steps of the script are automatically documented and that they correspond precisely and in the same order as the way they appeared in the Recording Activity dialog during 
recording.

Step 7: Run ("Play") the recorded test script.  Press the "Play" button on the ribbon or the toolbar.

As the script runs, the Rapise window will be minimized to the taskbar and you will see the results of the script's activities on the TwoDialogs application window.
At the end of the script execution, the Rapise window will be restored and the view will be of the report for the test:

Step 8: A refinement on the launching of TwoDialogs.exe.
To date, we have operated on the assumption that the TwoDialogs sample program (application) is running.  If this situation remained, the test script would require that the AUT be running before the 
script started.  That would require that the person running the test remembered where it resided.  To overcome this, Rapise provides a way to have the script run the program (AUT) before beginning 
the test.

Rapise has an underlying scripting language based on JavaScript (see Scripting).  This help system covers available scripting objects in detail from a practical perspective.  For the moment, we want 
to simply take the shortest path to starting the application before attempting to run the test.

There are at least 3 ways of adding application launch code to your test.

Way 1: Drag The File from the Test Files view

First, switch to Test Files view. Right-click on "Test" folder and choose "Add File(s)..." menu item:

Page 11 of 783/29/2012



And select the location of the TwoDialogs.exe (normally, it is C:\Program Files\Inflectra\Rapise\Samples\TwoDialogs\TwoDialogs.exe),

Now you have the executable as a part of your test files set:

If you wish to launch TwoDialogs.exe once then just double-click on it in the tree. If you wish it to be launched every time the test starts then simply drag it from the tree into the source code:

The proper launch statement will be inserted:

Way 2: Type the Code

The Global object contains methods that are available to all scripts.
Select the TwoDialogs.js file in the Test Files view of the Rapise main page.
Double-click the file name to open it in the main (editing) window of Rapise.  You will see the generated script from the recording session from earlier steps in this sample.

Page 12 of 783/29/2012



Place the cursor in the main editing window and click on the first line after 
function Test()
{

Now type
Global.
As soon as you type the ".", Rapise will give you a drop down list of all the available methods available in the Global object:

Select the DoLaunch(cmdLine, wrkD) member and hit the Enter key.
Now your script contains the line:
Global.DoLaunch('')

You need to correct the references to the command line:

Global.DoLaunch('"C:\\Program Files\\Inflectra\\Rapise\\Samples\\TwoDialogs\\TwoDialogs.exe"');

Way 3: Drag the Action from the Objects Tree

You may drag the method template from the Object Tree view. Expand the "Global" node and select the "DoLaunch" action in it. Drag the node into the proper position inside the script source:

Template call is inserted:

Now you need to correct the references to the command line:

Global.DoLaunch('"C:\\Program Files\\Inflectra\\Rapise\\Samples\\TwoDialogs\\TwoDialogs.exe"');

Tutorial: Testing Adobe Flex Applications Top Previous Next

Contents

Introduction
Prerequisites
Create a Simple Flex Application: Hello Flex
Enable HelloFlex Application for Testing

Link HelloFlex with Necessary Libraries
Add HelloFlex to FlashPlayerTrust

Record a Simple Test
Execute the Test
Using FlexLoader
See Also

Introduction
After going through this tutorial you?ll get a basic idea of how to test browser-based Flex applications with Rapise.

Page 13 of 783/29/2012



Prerequisites
This tutorial assumes that you have installed:

Create a Simple Flex Application: HelloFlex
Let?s start from creation of a very simple Flex application.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application 
    xmlns:mx="http://www.adobe.com/2006/mxml" 
    viewSourceURL="src/HelloFlex/index.html"
    horizontalAlign="center" verticalAlign="middle" 
    width="640" height="480"
>
    <mx:Script>
        <![CDATA[
            import mx.controls.Alert;
        ]]>
    </mx:Script>
    <mx:Panel 
        paddingTop="10" paddingBottom="10" paddingLeft="10" paddingRight="10"
        title="My Application"  
    >

    <mx:Label text="Hello Flex!" fontWeight="bold" fontSize="24"/>
    <mx:Button id="button" label="Button" click="{Alert.show('Button Pressed');}"/>

    </mx:Panel>
</mx:Application>

<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>HelloFlex</title>
</head>

<body scroll="no">
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

id="HelloFlex" width="100%" height="100%"
codebase="http://fpdownload.macromedia.com/get/flashplayer/current/swflash.cab">
<param name="movie" value="HelloFlex.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="#869ca7" />
<param name="allowScriptAccess" value="sameDomain" />
<embed src="HelloFlex.swf" quality="high" bgcolor="#869ca7"

width="100%" height="100%" name="HelloFlex" align="middle"
play="true"
loop="false"
quality="high"
allowScriptAccess="sameDomain"
type="application/x-shockwave-flash"
pluginspage="http://www.adobe.com/go/getflashplayer">

</embed>
</object>

</noscript>
</body>
</html

       a) Open CMD window in C:\HelloFlex directory
       b) Run command: mxmlc HelloFlex.mxml

1. Rapise
2. Adobe Flex Builder 3 (http://www.adobe.com/cfusion/entitlement/index.cfm?e=flexbuilder3)

1. Create home directory for the application: C:\HelloFlex. You may create any other directory that is more suitable for you, just do not forget to change corresponding paths used in this tutorial.
2. Create main file of the application: C:\HelloFlex\HelloFlex.mxml. Place the following code in it:

3. Create wrapper HTML for the application: C:\HelloFlex\HelloFlex.html. Place the following code in it:

4. Compile the application (make sure that mxmlc.exe is available in command line window. If Flex Builder is installed then it is available at: "c:\Program Files\Adobe\Flex Builder 3\sdks\<SDK Version>\bin\m

5. Test the application by opening C:\HelloFlex\HelloFlex.html in Internet Explorer.

Page 14 of 783/29/2012



Enable HelloFlex Application for Testing
To make HelloFlex application testable by Rapise you need to link it with automation libraries.

Link HelloFlex with Necessary Libraries
Recompile HelloFlex application using the following command line that links automation.swc and automation_agent.swc from Flex Builder 3 and FlexAdapter.swc from Rapise:

mxmlc HelloFlex.mxml -locale en_US -include-libraries="c:/Program Files/Adobe/Flex Builder 3/sdks/<Version>/frameworks/libs/automation_agent.swc","c:/Program Files/Adobe/Flex Builder 3/

Add HelloFlex to FlashPlayerTrust
Adobe Flash Player has restricted security settings for SWFs opened from file system. To enable testing of such SWFs their corresponding folders must be listed in FlashPlayerTrust directory.

Path to FlashPlayerTrust directory:

to enable testing for all users:
<system>\Macromed\Flash\FlashPlayerTrust

to enable testing just for current user:
<ApplicationData>\Macromedia\Flash Player\#Security\FlashPlayerTrust

(on Vista this path looks like: 
c:\Users\<User Name>\AppData\Roaming\Macromedia\Flash Player\#Security\FlashPlayerTrust
)

To register your SWF just create a file with the name "<name of your SWF>.cfg" and put it in this directory. In the file write a path to SWF folder.

Note: If you do not have FlashPlayerTrust directory in one of locations listed above then you will have to create missing directories yourself.

To register c:\HelloFlex\HelloFlex.swf 
       a) create file <ApplicationData>\Macromedia\Flash Player\#Security\FlashPlayerTrust\HelloFlex.cfg
       b) add this to the file: c:\HelloFlex

Page 15 of 783/29/2012



Record a Simple Test
1. Open C:\HelloFlex\HelloFlex.html in Internet Explorer. 
2. Start Rapise and press Record/Learn button

3. Choose HelloFlex application and press Select, recording will start.

Page 16 of 783/29/2012



4. In HelloFlex application press Button and then press Ok in the alert message.

5. Then press Verify button on Recording activity dialog and click on "Hello Flex!" label. In Verify Object Properties dialog check Enabled property.

6. You have recorded three basic steps of your test.

7. Press Finish button on Recording activity dialog. You now have recorded the test.

Page 17 of 783/29/2012



Execute the Test

Execute the test by pressing the Play button in Rapise.

Congratulations! You have successfully completed this tutorial and now know basics of testing Flex applications with Rapise.

Using FlexLoader
If you do not want to compile your application with automation libraries you have an option to use FlexLoader.

FlexLoader is a Flex 3 application compiled with required automation libraries and capable of loading any given SWF application. With FlexLoader you do not need to modify your application to make it tes

To use FlexLoader just copy FlexLoader.html and FlexLoader.swf from c:/Program Files/Inflectra/Rapise/Extensions/Flex/FlexLoader/bin to your web server near your application. Then type in browser URL t
http://localhost/FlexLoader.html?automationswfurl=Sample.swf
You can find sample application for testing here: c:/Program Files/Inflectra/Rapise/Extensions/Flex/FlexLoader/bin/Sample.swf

See Also
Adobe Flex

Features Top Previous Next

Rapise is a feature-rich test automation system, however all the features have been designed to make test automation as easy as possible.

Most of the features of Rapise fall into one of five categories:
(1) Building test scripts with little or no manual scripting.
(2) Reading and interpreting results and reports.
(3) Additional features and capabilities for sophisticated testing.
(4) Writing more involved or complicated tests using scripting.
(5) Extending Rapise to learn new or extended libraries of capabilities.

Depending on the application set being tested, not all of these features are necessarily needed for every situation.

For each feature, this document describes:
(1) The reason you might use a given feature.
(2) A summary of the basic value of the feature.
(3) An overview of how the feature works from the perspective of using it.
(4) At least one useful sample that demonstrates how to use the feature.

Recording and Learning Top Previous Next

Purpose
To understand what different objects might be found on a UI screen, and how to recognize them, record their characteristics and interact with them using Rapise.

Value
A UI screen entity (object) may consist of many different parts and components.  Actions on these objects, and usage of these controls, must be captured in different ways, depending on the properties 
of the object.  Rapise provides four fundamental methods for capturing objects and corresponding user actions:
(1) Recording - Rapise is able to track user interactions with AUT and automatically capture affected objects and corresponding user actions.  See Recording for more information. 
(2) Learning - there are cases when it is not necessary or is not possible to track user interactions with AUT. In this case user can manually point to an object that should be captured by Rapise. See 
Learning for more information.
(2) Analog Recording (Absolute/Relative) - this is for objects that are not standard in some important way, and so activity on them cannot be captured using recording or cannot be specified after 

Page 18 of 783/29/2012



learning. Absolute Analog Recording is used to track mouse usage (movement and clicks) and keyboard events.  For absolute analog recording, the positions these events are recorded relative to the 
top-left corner of the system screen.  (In contrast, in Relative Analog Recording, the events are recorded relative to the upper-left corner of the selected objecs.)  The events are recorded in a file of type 
arf (Analog Recording File).
(4) Simulated Object Recording - a Rapise user can use simulated objects when some objects are not natively supported by Rapise (e.g. their internal structure, properties and actions are unknown). 
 In this case, what is recorded are mouse clicks and keyboard activity.  Compare  to Analog Recording when all mouse and keyboard actions are recorded, including mouse up/down, mouse move 
events. See Simulated Objects for more information.

Usage
Before an operation (press, enter text, select, click, etc.) can be performed on an object automatically, Rapise must be able to identify the object.  That identification must be able to locate the object 
definitively, and it must be able to duplicate the action or operation precisely.  This carries several implications.  Firstly, if the AUT is in a different position on the screen when it is started, Rapise must 
still be able to find the objects in the AUT window.  Secondly, if the positioning of objects on the AUT window is proportional or relative to the screen size of shape, Rapise must still be able to locate the 
object.

A secondary set of considerations relates to the fact that the AUT UI layout maybe sensitive to the context of the state of the application.  For example, consider the case of a word processor.  Pressing 
the "bold" button doesn't predict what the result will be unless it is known whether the text highlighted is currently bold or not.  A far more illustrative example is that of the Microsoft Paint utility.  The 
Microsoft Paint utility is the subject of a Inflectra sample, Simulated Object.

The most instructive way to identify the objects to Rapise is to practice with the tool and different types of objects.  The best methodology to use is as follows:
(1) First, try to use Record/Learn to learn the object and record actions in a single step.
(2) If learning.recording fails to record actions in the grid, use SeSSpy to observe the object carefully and discover what libraries and classes are being used by the AUT.
(3) Use Verify (Ctrl+1) from the Recording Activity dialog to get summary information about the object.
(4) Use a more appropriate set of libraries when selecting the AUT prior to recording.
(5) Use Analog Recording with absolute positioning to identify and locate the object.
(6) Use Analog Recording with relative positioning to identify and locate the object.
(7) Use Simulated Object Recording to track the actions required and at the positions required.
(8) Look for custom libraries that support the technology being used by the AUT.
(9) Build your own custom library to support the technology in use by the AUT.

Recording Top Previous Next

Purpose
Recording is the name given to having Rapise track your interactions with an application.

Value
The actions you take in using the AUT are observed by Rapise and are transformed into a script (javascript), which you can execute using the Play button.  The script can be extended and modified to 
suit special purposes.

Usage
The Recording Activity (RA) Dialog is opened when you start recording using the Record/Learn button.  When the Recording Activity dialog appears, Rapise has connected to your AUT and is ready to monitor and record 
your interactions. You'll find instructions here or look at one of the examples  TwoDialogs or Sample Record and Playback

You'll notice that the RA dialog has a grid.  As you interact with the AUT, your actions will be listed in the grid.
If you record an incorrect action, you can right-click on the action and delete it.

To ensure you successfully record your interaction with the AUT, navigate slowly through the AUT.  Wait a second or two between each action to make sure Rapise has time to interpret and record your 
action.  Once your interaction is updated in the RA dialog grid, you are free to continue with the next action.

When you are done recording, press the Finish button on the RA dialog or type Ctrl+3.  The RA dialog will disappear, and you will see an automatically generated script opened in Rapise.

See also
If you have already recorded a script and want to record additional interactions in the same test, be sure to read Making Multiple Recordings.
The RA dialog is described more thoroughly in Recording Activity Dialog.
To learn how to run the script, see Playback.  To learn how to modify the script, see Scripting.
For a detailed tutorial, see Tutorial: Record and Playback in the Getting Started section.
For more information on the Spy (ObjectSpy) capability, see Object Spy.

Learning Top Previous Next

Purpose
Objects are the controls and items on the screen of the AUT.  "Learning" an object refers to the process of Rapise collecting enough information about the on-screen item to be able to reference the item 
when the test script is run without ambiguity and regardless of its location on the UI.

Value
When Rapise "learns" an object, it records the object's type, its name and how to find the object again (locator).  It saves everything it learns to the script so that the object can be identified when the test 
is run.  Rapise gives the object a simple name so that you can easily refer to it later if you decide to modify the script.

Usage
Objects are learned in two ways: (1) during recording or (2) explicitly. 

Recording
During a Recording session, Rapise learns about each object with which you interact.  For details, see Recording. 

Page 19 of 783/29/2012



Explicitly

Everything Rapise learns about an object is saved in saved_script_objects.  You can see this variable defined in the <project-name> objects.js file that will be listed in the Test Files tab of the Rapise. 
 The following shows what Rapise saved about the "Please enter your name" text box in the TwoDialogs example:

Please_enter_your_name_:{
"locations": [

{
"locator_name": "Location",
"location": {

"location": "4.4",
"window_name": "param:window_text",
"window_class": "param:window_class"

}
},
{

"locator_name": "LocationPath",
"location": {

"window_name": "param:window_text",
"window_class": "param:window_class",
"path": [

{
"object_name": "param:object_name",
"object_class": "param:object_class",
"object_role": "param:object_role"

},
{

"object_name": "param:window_text",
"object_class": "param:window_class",
"object_role": "ROLE_SYSTEM_DIALOG"

}
]

}
},
{

"locator_name": "LocationRect",
"location": {

"window_name": "param:window_text",
"window_class": "param:window_class",
"rect": {

"object_name": "param:object_name",
"object_class": "param:object_class",
"object_role": "param:object_role",
"x": 222,
"y": 40,
"w": 140,
"h": 23

}
}

}
],
"window_text": "Inflectra Rapise Two Dialogs Sample",
"window_class": "#32770",
"object_text": "Chris",
"object_role": "ROLE_SYSTEM_WINDOW",
"object_class": "Edit",
"object_name": "Please enter your name:",
"version": 0,
"object_type": "Win32Text",
"object_flavor": "Text",
"object_library": "Generic"

},
...

See Also

1. Open the Recording Activity Dialog.  Instructions are HERE.
2. Place your mouse over the object you wish to learn.  It should become surrounded by a purple box.
3. Press CTRL+2.
4. You will see a new entry in the Recording Activity Dialog, signifying that the object was learned.

Recording
Learning invisible  and Simulated Objects is slightly more complicated.  You can find information on both in the Recording Activity Dialog section.  Look for descriptions of the Pick Object button and the _Simulated
dropdown menu.
Learn Object

Analog Recording Top Previous Next

Concept
During Analog Recording, Rapise records mouse movements, keyboard inputs, and clicks. 

There are two types of Analog Recording: Absolute and Relative.

Usage

See Also

Absolute: Mouse coordinates are recorded relative to the top left corner of the screen.
Relative:  Mouse coordinates are recorded relative to the top left corner of the object beneath the mouse cursor.

1. Open the Recording Activity dialog. Instructions are HERE.
2. To record in Absolute mode, press CTRL+4.  To record in Relative mode, press the Analog button.
3. Press CTRL+Break to end analog recording.  You can alternate between normal and analog recording in the same Recording session.

Recording Activity Dialog

Page 20 of 783/29/2012



Absolute Analog Recording Top Previous Next

Purpose
Absolute analog recording is used to track mouse usage (movement and clicks) and keyboard events.  For absolute analog recording, the positions these events are recorded relative to the top-left 
corner of the system screen.  (In contrast, in relative analog, the events are recorded relative to the upper-left corner of the selected objects.)  The events are recorded in a file of type arf (Analog 
Recording File).

Value
Not all applications can be recorded by locating and learning objects being used.  A very good example of this is free-hand drawing in an application such as Microsoft Paint (Start Menu -> Accessories -
> Paint).  There are several reasons why this application cannot be recorded using object tracking, learning and recording.  The most important is that when the mouse is moved free-hand, it is operating 
on the same object the whole time - the blank "canvas."  Another reason is that the application changes behaviour and the positions of the canvas change depending on the size of the canvas and the 
positions of floating toolbars.

Absolute analog recording is provided by Rapise to make it possible to make it possible to design and implement tests for these types of applications.

See Also
Do Absolute Analog Recording
Relative Analog Recording

Relative Analog Recording Top Previous Next

Purpose
Relative analog recording is used to track mouse usage (movement and clicks) and keyboard events.  For relative analog recording, events are recorded in relation to the top-left corner of the 
application's window.  The events are recorded in a file of type arf (Analog Recording File).

Value
Not all applications can be recorded by locating and learning objects being used.  A very good example of this is free-hand drawing in an application such as Microsoft Paint (Start Menu -> Accessories -
> Paint).  There are several reasons why this application cannot be recorded using object tracking, learning and recording.  The most important is that when the mouse is moved free-hand, it is operating 
on the same object the whole time - the blank "canvas."  Another reason is that the application changes behaviour and the positions of the canvas change depending on the size of the canvas and the 
positions of floating toolbars.

Relative analog recording is provided by Rapise to make it possible to make it possible to design and implement tests for these types of applications.

See Also
Do Relative Analog Recording
Absolute Analog Recording

Simulated Objects Top Previous Next

Purpose
During normal recording, Rapise Learns about the Objects you interact with.  If, for some reason, Rapise cannot learn an object, you can create a Simulated Object.  Rapise identifies a simulated object 
by its location in the Window or Dialog and can perform certain generic actions on it, such as Click and Fill In.  This works in the reverse sense also.  That is, if Rapise cannot identify an object, or, for 
example, you click outside any defined object in the AUT's UI, Rapise will create a simulated object to represent the action.

Value
Not all objects on a screen are "standard" or can be recognized by the libraries loaded.  Some are compound objects, consisting of two or more individual objects that work together to deliver a UI effect 
or behaviour.  Simulated objects "fill in the blanks" to allow Rapise to cause an event outside the normal set of objects.

See Also
Recording Activity Dialog
Sample Tests: The SimulatedObject sample.
Deal with a Simulated Object

Object Libraries Top Previous Next

Purpose
Object libraries define what objects and interactions Rapise understands during Recording and Learning.  Most Object Libraries are specific to an application or a set of applications. 

Usage
Rapise comes with several different object libraries: 

1. Auto 
2. .NET 
3. Internet Explorer HTML 
4. Firefox HTML 
5. Chrome HTML 
6. User 
7. DOM GWT 
8. DOM YUI 
9. Generic 

10. Advanced Accessibility. 
11. WPF 
12. Console 
13. Java 
14. Managed 
15. DevExpress 
16. Infragistics 
17. Telerik 
18. Adobe Flex AIR 

You can add your own Recording library--one that understands the objects in your application.

Selecting Auto as the application recording library will cause Rapise to select the one that it deems is most appropriate. 
.NET: Use this library with .NET applications. When used with .NET 2.0+ applications you should also include the Managed library as well. When used with WPF applications, you should also include 
the WPF library. 
Internet Explorer HTML , Chrome HTML and Firefox HTML are used with Internet Explorer, Google Chrome and Firefox respectively.  They understand only the DOM (document object model) and 
therefore capture interactions with the web application, not the browser.  They also have access to passwords.  Tests recorded with either of the libraries can be run in any of the three browsers.  See 
Cross Browser Testing for more details. 
User refers to Custom Libraries. 

Page 21 of 783/29/2012



See Also

The DOM GWT library uses the Document Object Model to learn or record objects found in the Google Web Toolkit.
The DOM YUI library uses the Document Object Model to learn or record objects found in the Yahoo! User Interface library.
The Generic library uses Microsoft's MSAA event model to capture user actions. The Generic library should be used if there is no library more specific to the AUT available.  The Generic library will 
record a large set of applications, but it has drawbacks; it may skip some actions and/or record unintended actions.  Passwords are not visible to the Generic library, and must be manually entered into 
the test after recording. 
The Advanced Accessibility library is for recording with Internet Explorer.  In general, you will want to use the Internet Explorer HTML library.  However, there is some information available through 
Advanced Accessibility that is unavailable when looking solely at the DOM.  For example: the absolute screen position of an object.  Advanced Accessibility is not precise, as Internet Explorer HTML 
is, and may miss actions or record unintended actions. 
The WPF library is for use with Windows Presentation Framework (WPF) applications. 
The Console library is for use with Windows Console Applications that run in the command-line. 
The Java library is for use with Java GUI applications that are written using either AWT or SWING.
The Managed library is for use with Microsoft .NET 2.0 + applications. It adds some additional .NET 2.0+ specific-controls to the list supported in the Generic and .NET libraries. 
The DevExpress library allows you to record and learn using the various controls provided in the DevExpress DXperience v1.0 component library. This allows you to save time by having the system 
recognize the various controls directly. 
The Infragistics library allows you to record and learn using the various controls provided in the Infragistics component library. This allows you to save time by having the system recognize the various 
controls directly. 
The Telerik library allows you to record and learn using the various controls provided in the Telerik RadControls for Winforms component library. This allows you to save time by having the system 
recognize the various controls directly. 
The Adobe Flex AIR library is for use with applications that are written using Adobe Flash, Flex or AIR. 

Recording
To write an Object library specific to your application, see Custom Libraries. 
Cross Browser Testing
If you interact with an object that is not defined in your chosen recording library, it will be treated as a Simulated Object. 

Custom Libraries Top Previous Next

Purpose
If your application doesn't work with the predefined Recording Libraries, you can create your own.

Usage
Your library can provide Basic or Full support for your application.  Basic support allows you to manually Learn objects, write test scripts, and Playback your scripts.  Full support allows you to Record as 
well.  Create your library in the LibUser directory.  Unless you specified otherwise, you will find it at:
C:\Program Files\Inflectra\Rapise\Engine\Lib\LibUser.

Basic Support
Add a Matcher Rule to the library for every window type in your application.  The SeSMatcherRule includes information to identify your application, and a set of behaviors.
var yourApplicationRule = new SeSMatcherRule(
{
    object_type: "yourAppObject",
    classname: "yourAppFrame",  //You can use a regular expression here
    behavior: [yourAppBehavior]
})

Override Actions: Override actions in yourAppBehavior (above). The action definitions you provides will be used during Playback.  Overriding actions does not affect recording.
var HTMLFirefoxBehavior = 
{
  actions: [{
      actionName: "Click",
      DoAction: function(){}
    },
    {
      actionName: "SetText",
      DoAction: function(/**String*/txt){}
    }]
}

Full Support
Enable Recording:  You can enable recording in two ways.  If your application notifies the Accessibility Events interface about application events, you can override events in the behavior section of 
SeSMatcherRules:
var newBehavior={
  actions: [{/*section deleted for brevity*/}],
  events:
  {
    OnSelect: function(/**SeSObject*/ param, /**Boolean*/ badd)
    { /*...*/
    },

    OnSelectAdd: function(/**SeSObject*/ param, /**Boolean*/ badd)
    { /*...*/
    }
}}

var newRule = new SeSMatcherRule({
    object_type: "someType",
    role: "someRole",
    behavior: [newBehavior],
})

Otherwise, you will have to implement Custom Recording.

Custom Recording: With custom recording, it is the library's responsibility to:

See Also

detect user actions in the application, and 
call RegisterAction() (which writes the action to the script).

To see what actions and events can be overridden, see SeSBehavior.js (in the Rapise Engine).
Check the Engine/Lib directory for examples.
You can alter the behavior of an action without creating an entire library.  See the Actions section for more details.

Actions Top Previous Next

Purpose
Actions are anything the user can do to a GUI control, such as click, select, fill with text, etc.  You can override the behavior of an action, without creating or altering a Recording Library, using 
SeSExtendAction(). Overriding an action affects Playback, but not Recording.

Usage
SeSExtendAction() is used to override an action handler or add a new DoAction handler:

function SeSExtendAction(objectType, doActionName, replacementFunction) 

where:

Page 22 of 783/29/2012



In most cases SeSExtendAction() should be called from within TestInit().

Calling Base Actions
The function you are overriding is called the BaseAction.  You can call it like this:

this.BaseAction(arguments);

You may override actions several times. For example:

function DoActionB()
{

this.BaseAction();
}

function DoActionC()
{

this.BaseAction();
}

SeSExtendAction("Win32Button", "DoAction", DoActionB);
SeSExtendAction("Win32Button", "DoAction", DoActionC);

When DoAction is called for the Win32Button, the following sequence is executed:

DoActionC->DoActionB->DoAction

See Also

objectType is the name or regular expression specifying the object type(s) for which this extension should apply.
doActionName is the name or regular expression specifying the DoAction handler that should be overridden.
replacementFunction is the function containing overriding behavior.

To see what actions can be extended, look in SeSBehavior.js (in the Rapise Engine).

Multiple Recordings Top Previous Next

Purpose
Every time you record, the script recorder updates your test script.  Be cautious about what changes you make to the test script; some changes could be lost if the recorder is re-run (see Usage).

Usage
The test script path can be found in the Settings Dialog under Settings > ScriptPath.  Unless you specify otherwise, the test script is named testname.js (where testname is whatever you named your 
test). 

Note that the Script Recorder only has knowledge of four functions and two data structures:

You can make changes to the body of any of the above functions, and you can alter the initialization of g_load_libraries and saved_script_objects.  All other changes are unsafe.

During Recording, the Script Recorder:

For example, suppose that you have the following code inside your script file:
//External comment  // UNSAFE: will be removed by recorder
/*Another comment*/ // UNSAFE
var external_var;   // UNSAFE

function Test()
{

//comment --SAFE
var external_var;  //SAFE: defines a local variable for function “Test”
global_var=value;  //SAFE: updates (or defines) a global variable
//SAFE everything inside this function will be kept intact after recording

}

The parts of code marked UNSAFE will be deleted by the script recorder.

See Also

1. function Test()
2. function TestInit()
3. function TestFinish()
4. function TestPrepare()
5. array “g_load_libraries”
6. map “saved_script_objects”

1. Appends newly recorded actions to the Test() function 
2. Appends newly encountered objects to the saved_script_objects array
3. Updates g_load_libraries to reflect the library selections you made in the Select an Application to Record... Dialog
4. Ignores (and leaves intact) the definitions of TestInit(), TestFinish(),  and TestPrepare()

Settings Dialog
Select an Application to Record... Dialog
Recording

Object Spy Top Previous Next

Purpose
Object Spy allows you to inspect an object's properties and state.

Value
Many controls on UIs are compound objects or there may be many instances of a similar object.  To be sure to select precisely the correct object, or to select the correct object from a collection of similar 
objects, the object's properties can be used to further identify the correct instance.

Usage
To spy on an Object:

1. Open the SeS Spy Dialog.  This can be done directly using the Spy button in the main Rapise window's toolbar, or by pressing the button in the Recording Activity dialog 
during recording or learning.

2. Press the Start Tracking button (or type CTRL+G).
3. As you mouse over different objects, you will see the contents of the SeS Spy dialog change as it collects information about the object.
4. Mouse over the object you wish to spy on and press CTRL+G.  The reduced-size tracking dialog will be expanded into the the larger SeS Spy Diaog dialog, presenting all the available information for 

the object.

Page 23 of 783/29/2012



See Also
See the SeS Spy Dialog for more details.

Playback Top Previous Next

Purpose
When you record a test, Rapise translates your actions into a script.  When you playback the test, the script is executed.

Usage
You can either run your script from the Command Line, or you can play it back while Rapise is open (described below):

See Also

1. You will first need to open your test.  There is no need to have the AUT (Application Under Test) open. Rapise will open the AUT before it begins execution of the test.
2. Now, press the play button at the top of the Rapise window. 

3. When Rapise is done executing the test, results will be displayed in a table.  The rows with green text are steps that passed; the rows with red text are steps that failed.  The following is a screenshot 
of test results where every step passed:

For more information about the report, see Automated Reporting..
For information about recording a test, see Recording.
For instructions on using the Command Line, look HERE.

Command Line Top Previous Next

Purpose
Rapise test scripts can be run from the command line.

Usage
The form of the command is:
cscript SeSExecutor.js path_to_sstest_file [evals]

where 
path_to_sstest_file is a path to sstest file, e.g.  "C:\Program Files\Inflectra\Rapise\Samples\SmarteATM\SmarteATM.sstest"
evals (optional) is a statement like this:
-eval:varname1=value1;varname2=value2;...

varname is a global variable associated with an option in the Settings Dialog.  Global variables are prefixed with a g_. The global variables under the Execution and Recording headings can be found by 
clicking on the corresponding option in the Settings Dialog (see below):

Other variables include:

Exit Code

See Also

g_scriptPath
g_reportPath
g_objectsPath
g_configPath

0 indicates a pass
1 indicates failure

Settings Dialog

Object Locator Top Previous Next

Page 24 of 783/29/2012



Purpose
Object locators are created during Recording/Learning and used during Playback to identify learned objects and simulated objects. There are four types of locators: 

Usage
The locator for each object is specified in saved_script_objects in <scriptname>.objects.js your test script.   Locator information is highlighted in the simulated object example below:

Obj10:{"version":0,"object_type":"SeSSimulated","object_name":"regex:.* - Paint",
"object_class":"MSPaintApp","object_role":"ROLE_SYSTEM_WINDOW",
"object_text":"regex:.* - Paint",
"locations":[{"locator_name":"Location","location":{"location":"",
"window_name":"regex:.* - Paint","window_class":"MSPaintApp"}}]}

Locator Parameters
If a piece of information in the locator matches a piece of object info (object_name, object_class, object_role, object_text) then it is stored in the locator as "param:<object_info>".  For example:

 "object_name": "param:object_name",
 "object_class": "param:object_class",
 "object_role": "param:object_role",

Over-riding Locator Parameters
You can over-ride the information used to locate your object at runtime.  Normally, to refer to an object, you use the SeS function:

SeS('Obj9')

To override locator parameters, specify the new value in the function call.  In the following example, we over-ride the object_name parameter for object 9:

SeS('Obj9', {object_name:"regex:.*"})

You may want to change a parameter value for every locator/object in the program.  For instance, perhaps the url of the webpage has changed.  Use the global variable g_locatorparams as in the 
following example:

function Test()
{

// Here we use direct parameter overriding
  SeS('Obj1', {url:"http://newaddr/"}).DoAction();
  SeS('Obj2', {url:"http://newaddr/"}).DoAction();

// And this is equivalent to above
g_locatorparams["url"]="http://newaddr/";

  SeS("Obj1").DoAction();
  SeS("Obj2").DoAction();
...
}

See Also

Location: This locator uses the object's index relative to encapsulating objects for identification. The location is stored as a period separated list of indexes. For instance, 1.2.3 would be "the third 
object in the second object in the first object."  The name, class, and role of the object are also stored.
LocationPath: This locator remembers name, class, and role property information for the object and all of its encapsulating objects.
LocationRect: This locator stores screen coordinates.
Ordinal: This locator creates an array of object name/object class combinations.  Each object is assigned an index in  the array.

Object Learning
Playback

Automated Reporting Top Previous Next

Purpose
Each time you playback a test, Rapise automatically generates a report detailing the steps of the test, the data values used, and the outcome of each step.

Usage
Execute your test using the instructions here.  When the test is complete, the Report Tab will appear in the Ribbon, and a report file (ending in .trp) will open in the Content View.  It will look like this:

The first row (with a white background) is used for Report Filtering.  The rows below that each represent a step in the test.  The rows with green text represent success; the rows with red text represent 
failure. You can reposition the columns by dragging and dropping the column names. 

The Columns

Drag a column header here...

Use to order by the values in the chosen column.  The result of dragging the Status column over looks like this:

#: For displaying icons.
Name: The test name.
Start: The time the test step began executing.
Type: Can be one of the following values: Test; Assert; Message.
Comment: Assertions and messages have associated comments. They are displayed here.
Status: Whether the step passed, failed, or was merely informational.

Page 25 of 783/29/2012



You can expand each item to see the corresponding report rows:

Drag the Status icon back to undo the sort:

See Also
Report Filtering
The report output file is specified in the Settings Dialog (Settings > ReportPath).
The Report tab of the Ribbon is used to alter the report layout.

Writing to the Report Top Previous Next

Purpose
You can write to individual columns, create columns, and add data to the report.

Usage

Writing to and Creating a Column
Use Tester.PushReportAttribute or Tester.SetReportAttribute to set values in specific rows. Tester.PopReportAttribute reverses the effect of Tester.PushReportAttribute:

PushReportAttribute
Tester.PushReportAttribute(columnName, value); 

...some test steps...        //the rows corresponding to these steps will have 
//value in their columnName column

Tester.PushReportAttribute(columnName, value2); 

...some test steps...        //the rows corresponding to these steps will have 
//value2 in their columnName column

Tester.PopReportAttribute(columnName); //test steps proceeding this will be back to value
If columnName does not exist, it will be added to the report.

SetReportAttribute
Tester.SetReportAttribute(columnName, value);
If columnName does not exist, it will be added to the report.  Column columnName will be populated with value for rows created after this function call (unless specified otherwise).

Adding Data
Data must be associated with an Assert row or a Message row.

Tester.Assert(description, expression, data, columnValuePairs)
Tester.Message(description, data, columnValuePairs)

[        new SeSReportText(text),
new SeSReportLink(urlString, linkText),
new SeSReportImage(ImageWrapperObject, imageDescription)

]

{requirement: "Req1.2.3", paragraph: "12.5"}

See Also

description is a string.
expression is the Boolean expression that the assertion tests.
data is an array of data objects.  Each data element is written to its own row below the assert/message row with which it is associated.  Data can be text, a link, or an image.  The following is an 
array with text, link, and image data.

columnValuePairs is an object with key/value pairs.  Column names are the keys.  If the specified column does not exist, it will be created. Ex:

Automated Reporting
The test samples include a sample about reporting (Reporting.sstest)

Report Filtering Top Previous Next

Purpose
Report Filtering lets you specify criteria to filter your view of the test execution report.  Rows that do not match your criteria are hidden.

Usage

You can filter the report view while the file is open.  Directly above the first row of the report, there is a row of filter cells.  Each one has a matching criteria button , a text-box to specify a filter value, a 

drop-down menu with predefined filter values, and a clear button  :

Page 26 of 783/29/2012



Matching Criteria
Matching criteria determine how to compare the filter string value you input with the values in the report.  You can select from 16 matching criteria.  Press the button marked A above the column you 
are filtering to see the possible criteria:

Predefined Filter Values
If we expand the filter cell's drop-down menu, we will see a list of predefined filtering options:

Custom Filter Option
To create a filter with multiple matching criteria and filter values, select (Custom) from the filter cell's drop-down menu.  The Enter filter criteria for... Dialog will open.  Instructions for how to use it are 
here.

Undo Filtering
To undo filtering for a particular column, press the clear button for that column:

See Also

(Custom): This option has to do with the next section Custom Filter Options.
(Blanks): Matches all rows where the value for this column is blank.
(NonBlanks): Matches all rows there the value for this column is not blank.
All other predefined values are copied from cells in the column you are filtering.

Automated Reporting
Enter filter criteria for... Dialog

Scripting Top Previous Next

Purpose
There are three reasons to script with Rapise:

Usage
Rapise scripts are written in JavaScript (Microsoft JScript).  You can run and debug your script using the full featured Internal Debugger.  Rapise includes a testing API, with methods for manipulating 
images, spreadsheets, common GUI widgets, and more.

See Also

1. To modify a recorded test to increase coverage, add assert statements, or make the test data-driven.
2. To extend recording functionality by defining your own objects, actions, and libraries.
3. To customize the Rapise Engine.

Page 27 of 783/29/2012



Learn about MS JScript HERE. 

Understanding the Script Top Previous Next

Purpose
When you create a new test in Rapise, four files are created:

where <TestName> is the name of your Test.

You can have as many javascript files in your test directory as you like, but <TestName>.js is the test script (unless you specify otherwise in the Settings Dialog).  When you record, your interactions are 
written to <TestName>.js and objects are written to <TestName>.objects.js; when you Playback the test, <TestName>.js is the script that will run.  All Rapise test scripts must have the same basic 
structure.

Usage
If you are going to modify the script, or create a test script from scratch, you will need to know the test script structure:

Basic Script
The Recording tool creates a Rapise Script with three sections:

//########## Script Steps ##############
function Test()
{
   //script logic
}

g_load_libraries=["Generic"]; // This script will load the Generic library

var saved_script_objects={
//list of objects used in this script ?

};

All Scripts must have the above three sections.

Full script
The following functions are also recognized by Rapise and may be present in the test script. Put these functions either in <TestName>.js or <TestName>.user.js.

See Also
To specify a different test script, see the Settings Dialog.  The test script is specified by Settings > ScriptPath.

<TestName>.sstest ? the test meta-data
<TestName>.js ? the test script file
<TestName>.objects.js ? the file that contains recorded objects.
<TestName>.user.js ? the file that contains user defined functions.

1. <TestName>.js: A Test() function

2. <TestName>.js: A list of required libraries: g_load_libraries

3. <TestName>.objects.js A list of learned objects in saved_script_objects.

TestInit() : This function is called once before script playback. It should be used to initialize script-wide data (counters, open datasets, etc).

TestFinish() : This function is called once after test execution. It should be used to release resources (data sets, spreadsheets).  TestFinish() is a good place to post-process Reports.   It may also 
be used as an integration point with external test management or bug tracking systems.

TestPrepare() : For advanced users; TestPrepare() is called before recording and before playback. It may be used to properly initialize libraries.

Naming Conventions Top Previous Next

Purpose
The Rapise engine and API follow some simple naming conventions.

Usage
You will find descriptions of the naming conventions below.  Note: italicized text represents placeholders.

SeS<xxx> ? public functions for user
Do<Action> ? action implementations
_<somevar> and _<somename> ? private functions and objects
g_<varname> ? system global data.

Defining Functions Top Previous Next

Purpose
The Rapise test script is in Javascript.  You may define as many Javascript functions as you would like to call from your test script.

Usage
There are two ways to maintain additional functions: (1) Inside your test script and (2) in an external file.

Inside your Test Script
Define the function inside of one of the following functions: Test(), TestInit(), TestFinish(), or TestPrepare().  The Script Recorder will erase code placed outside of these functions.

Inside  *.user.js File
It is recommended to put all user functions into <testname>.user.js file available in any test from its creation. 

This file is automatically attached into every script. All variables and functions defined in it may be used in the test. User-defined functions are also available under the "User Functions" node in the 
Object Tree:

Page 28 of 783/29/2012



In an External File
You can define your function in another file and include it.

For example:
function Test()
{

// Withdraw is defined inside the "Test" function
function Withdraw(amount)
{

Log("Start Withdraw of:"+amount);
// Withdraw logic is here

}

Withdraw(12.34);

// Include "UtilityFunctions.js" to get at function Deposit()
eval(g_helper.Include(Global.GetFullPath("UtilityFunctions.js")));
// Deposit is defined in "UtilityFunctions.js"
Deposit(56.78);

}

See Also
To learn more about what the Script Recorder will change in your test script, see Multiple Recordings.

Global Variables Top Previous Next

Purpose
Global variables are variables that can be accessed anywhere in the script.  There are restrictions (specific to Rapise) as to where they may be placed in the test script.  These restrictions do not apply to 
any additional script files you write and then call from your test script.

Usage
Define your global variables in TestInit().  Because Rapise uses javascript, you can initialize global variables inside of functions.  See the sample TestInit() below. 

function TestInit()
{
   number_of_visited_links = 0; //This variable becomes global
   var local_var = 5; //This variable is local for TestInit function
}

The keyword var gives variables local scope.  A variable initialized without the keyword var will have global scope.

The Script Recorder knows about the following functions: Test(), TestInit(), TestPrepare(), and TestFinish(). Do not declare global variables outside of one of the preceding four functions.  The Script 
Recorder alters the script each time it is run, and may erase your changes. 

See Also
See Making Multiple Recordings for details on what effect the script recorder will have on your test script.
For details on the structure of the test script, see Understanding the Script.

Including other Files Top Previous Next

Purpose
The eval keyword lets you use external functions and data structures in your test script; eval is a javascript reserved word.

Usage
See the example below:

function Test()
{

eval(g_helper.Include(Global.GetFullPath("myfunctions.js")));
}

See Also
Understanding the Script

Regular Expressions Top Previous Next

Purpose
A regular expression is a sequence of characters that describes how to construct a set of strings.  It is composed of character literals and special characters.  Each character literal represents one single 
character (such as "a", "b", "C", "1").  The special characters can represent a character, many characters, or a choice about how to select characters.

Special Characters:

Char Description Examples

Page 29 of 783/29/2012



A string and regular expression match if the string is an element of the set described by the regular expression.

Usage
In Rapise, you must prepend regular expressions with the string "regex:".  So the regular expression describing all strings would be: regex: .*

There are three uses for regular expressions in Rapise: (1) in Object Locators, (2) in action overriding code, (3) in Custom Libraries.

? Combines with whatever character/sub-
expression precedes it to represent 0 or 1 
occurrences of that character/sub-expression.

a? describes the set:
{"", "a"}

* Combines with whatever character/sub-
expression precedes it to represent  0 or more 
occurrences of that character/sub-expression.

a* describes the set:
{"", "a", "aa", "aaa", "aaaa", "aaaaa", "aaaaa", ...}

+ Combines with whatever character/sub-
expression precedes it to represent 1 or more 
occurrences of that character/sub-expression.

a+ describes the set:
{"a", "aa", "aaa", "aaaa", "aaaaa", "aaaaa", ...}

. Any arbitrary character. .* describes the set of all possible strings. 

| Denotes a choice between two strings ab|ba describes the set:
{"ab", "ba"}

() Denotes a sub-expression. (abc)?d describes the set:
{"abcd" , "d"}

[] Denotes one character chosen from all the 
characters with the brackets.  You can use a 
hyphen to denote a range.

[abcde] describes the set:
{"a", "b", "c", "d", "e"]
[A-Z] describes the set of all one-character, 
alphabetic, capitalized, strings. {"A", "B", "C", ... , 
"Z"}

{n,m} Quantifier expression.  Meaning: "Between n 
and m occurrences of whatever sub-expression 
or character precedes."

(abc){1,2} describes the set:
{"abc", "abcabc"}

^ The beginning of a string. ^a.* matches all strings that begin with an a.

$ The end of a string. .*a$ matches all strings that end with an a.

\ Precedes a special character to take away any 
special meaning.

[\\\$\-\+\*] represents the set:
{"\", "$", "-", "+", "*"]

Assertions Top Previous Next

Purpose
An assert statement is a special Boolean condition that represents an assumption about program state at a particular point in test execution.  When an assert is encountered, the condition is evaluated. 
 A value of False indicates a program error.  In some languages, execution will halt if an assertion evaluates to False.  In Rapise, the result is logged to the report with failed status, and execution 
continues.

Create a Checkpoint
To create a checkpoint using an assertion, you will have to manually alter the test script (another way is to use the Verify Object Properties dialog during Recording):

var xx = SeS(?OkButton?).GetX(); // X position of the object

Read about Tester.Assert syntax in the Rapise Objects documentation part. 

See Also

1. Select a location in your script and a subset of application state to check.

2. Query for the application state.  For images, use the ImageWrapper class provided with Rapise.  For object properties, Get<..> methods.  For example:

3. Save the state.  If you are creating an image checkpoint, you will want to save the image to a file.  If you are looking at text data, you could use a database, spreadsheet or text file.  The 
SeSSpreadSheet class gives you access to excel spreadsheets.

4. Compare. Use the ImageWrapper class to compare images; use Spreadsheet to read and compare spreadsheet data. 

5. Write an Assert Statement. Make an appropriate call to Tester.Assert method. Besides a Boolean condition, pass additional data to be placed in the Report.

The test samples include a UsingImageCheckpoint.sstest
Verifying Object Properties
Writing to the Report

Data Driven Testing Top Previous Next

Purpose
Data Driven Testing is an automated testing technique in which test case data is separated from test case logic.  Each set of test case data consists of input values and a set of expected output values. 
 The actual output values are compared to the expected output values to determine whether the test passed.

Usage
The Spreadsheet object is useful for implementing data-driven tests.  It allows you to connect to, query, and read an excel spreadsheet from your test script.  To create a data-driven test, you will:

function Test()
{

//Set Text Inflectra in q
SeS('Obj1').DoSetText("Inflectra");
//Click on btnG
SeS('Obj2').DoClick();

}
The actions recorded were: (1) Type Inflectra into the search box. (2) Press the Google Search button.

function Test()
{

function Logic(searchterm){  //our new function encapsulates the test logic
//Set Text using searchterm

   SeS('Obj1').DoSetText(searchterm)  //here we changed a hard-coded value into a variable
//Click on btnG

1. Record a test.  The exact inputs you use for the recording will not matter as much as your interactions with the objects.  The following excerpt was recorded using www.google.com:

2. Parameterize the Test() function. The Test() function has all of the procedural logic for the test.  Replace input values with variables.  Encapsulate the logic in a nested function with one parameter 
for each variable you created.  As an example, we will parameterize  the Test() function we created in step one:

Page 30 of 783/29/2012



   SeS('Obj2').DoClick()
}
Logic("Inflectra") //don't forget to call your new function

}

In our google example, we only have one input value (searchterm) and we're not comparing any expected output values, so we will only need one column in our spreadsheet.  Save the spreadsheet in 
the test folder as searchterms.xls:

Use "Add File(s)..." to add a spreadsheet to the test files:

Drag the 'searchterms.xls' from files tree into appropriate place in your test source:

In our example, we use a Spreadsheet object and run the test logic once for every row.
function Test()
{

function Logic(searchterm){  
//Set Text searchterm in q

   SeS('Obj1').DoSetText(searchterm)
//Click on btnG

   SeS('Obj2').DoClick()
}

Spreadsheet.DoAttach('searchterms.xls', 'Sheet1');

// Go through all rows
while(Spreadsheet.DoSequential())
{

// Read cell value from column 0
var term = Spreadsheet.GetCell(0);
// Pass it into Logic function
Logic(term);

}
}

3. Create the test case data.  In an excel spreadsheet, create a column for every variable in step two.  Add columns for any expected output values you wish to verify.  Each row is a test case.

4. Add spreadsheet to the test

5. Attach Spreadsheet object to searchterms.xls

6. Use Spreadsheet to access the test case data.

Customizable Engine Top Previous Next

Purpose
The source for most of the Rapise implementation is available for you to read and modify.  You may find it useful to look at if you decide to create a library customized for your application.

Usage
Unless you specified otherwise, Rapise will be installed at 
C:\Program Files\Inflectra\Rapise\

The source code is in the Engine directory.  You'll find the recording/learning libraries in Engine\Lib.  The core logic is in four files: SeSAction.js; SeSBehavior.js; SeSCommon.js; SeSConfig.js.

If you plan to make changes to the Rapise Engine, we recommend you use a version control system capable of reconciling code conflicts, as we do not support user customizations.  However, let us 
know if you feel that your customizations are generally useful; if we decide to integrate them into Rapise, we will support them.

See Also
Custom Libraries
Scripting

Page 31 of 783/29/2012



Javascript IDE Top Previous Next

Purpose
The Javascript IDE includes an editor and a debugger.

Usage
Simply open a script to view the editing features; create a breakpoint and play the script to view the debugging features.

See Also
Learn about MS Jscript HERE.

Internal Debugger Top Previous Next

Purpose
The Internal Debugger provides Persistent Breakpoints, Control Execution, a Watch View, a Variable/Call Stack View,  and Tooltips.

Usage
To use the internal debugger, you must first install Microsoft Script Debugger . 

You can choose the Internal Debugger on the Rapise Ribbon (Test tab > Debugging menu). 

The top drop-down menu has  four options.  Choose the Run with Internal Debugger option.

When you Playback your test script with a breakpoint, the debugging related menus and views will appear:

The following screenshot shows the placement of Debugging related functionality in Rapise:

See Also

The Debugging tab of the Ribbon
The Watch View and Variable/Call Stack View

You can use the External Debugger to debug your scripts as well.

Tooltips Top Previous Next

Purpose
Tooltips let you view a variable's value during debugging.

Usage

See Also

1. Put a breakpoint in the script at or near where you wish to investigate
2. Mouse over variables as you advance through the script.   A small box will popup, displaying the variables' values:

Breakpoints
Internal Debugger

Control Execution Top Previous Next

Purpose
Control Execution allows you to manually direct the execution of the script.

Usage
1. Set a Breakpoint where you want to take control of the execution
2. Use the buttons on the Debugger tab of the Ribbon to step through the script.

Page 32 of 783/29/2012



See Also
Ribbon: Debugger

Breakpoints Top Previous Next

Purpose
Breakpoints stop execution of the test at a specific line in the script.  They allow you to investigate program state, and trace execution flow.

Usage
To set a Breakpoint:

See Also

1. Open the script you would like to debug in the Source Editor.
2. Place the cursor at the line where you want a breakpoint.
3. Press F9 or the Break button on the Ribbon (Debugger tab).

Ribbon: Debugger
Control Execution

External Debugger Top Previous Next

Purpose
When you enable the External Debugger, the Microsoft Script Debugger is used to debug your script.  Rapise provides an Internal Debugger as well.

Usage
You can enable the External Debugger on the Rapise Ribbon (Test tab > Debugging menu). 

The top drop-down menu has  four options:

When you choose the Run with External Debugger option, Microsoft Script Debugger will open as soon as you begin Playback of your script. The debugger will pause on the line

 WScript.Echo("SeS Player Starting...")

and display an error message.  There is no actual error; you can begin debugging.  Note, however, that Rapise is mostly written in javascript, and the Debugger will step through Rapise implementation 
as well as your test script.

See Also

No Debugging
Run with Internal Debugger: See Internal Debugger for more info.
Run with External Debugger: Open the Microsoft Debugger to run the script.
Run External Debugger on Error: Open the Microsoft Debugger only if an error occurs.

Internal Debugger
For instructions on using the Microsoft Script Debugger, try this link: http://msdn.microsoft.com/en-us/library/ms532989.aspx

Verbosity Levels Top Previous Next

Purpose
The Verbosity Level affects the amount of information written to the Output View. 

Page 33 of 783/29/2012



Usage
The Verbosity Level is set on the Ribbon (Test tab > Debugging menu).  See below:

See Also
Ribbon: Test Tab

Syntax Highlighting Top Previous Next

Purpose
With Syntax Highlighting, words in a program are displayed so as to immediately indicate their function.  Reserved words, variables, literals,  and comments may be differentiated by color, boldness, 
underline etc.  Syntax Highlighting makes programs easier to read and modify.

Usage
Every javascript file opened in Rapise will display with Syntax Highlighting.

See Also
Source Editor

Code Folding Top Previous Next

Purpose
Code Folding allows you to hide or show blocks of code.  These blocks have syntactic meaning, such as a function body, a class declaration, a loop, or a comment. 

Usage
Every javascript file opened in Rapise will display with hide and show buttons to the top left of their corresponding block.  In the following screenshot, hide buttons are highlighted with green boxes; show 
buttons are highlighted with purple boxes:

See Also
Source Editor

Syntax Checking Top Previous Next

Purpose
An editor performs Syntax Checking if it notifies the user of syntax errors in their program/script.

Usage
Rapise performs Syntax Checking as you type into the Source Editor.  Messages regarding syntax errors can be found in the Warning View.

For example, you begin writing a function:

We have a typo here. We used ?}? instead of ?)?. Once the error is corrected, the warning view clears automatically:

See Also
Source Editor

Code Completion Top Previous Next

Purpose
Rapise provides Code Completion for class, method and field names.

Usage

Page 34 of 783/29/2012



Begin typing a class, method, or field name.  Press CTRL+space to open a list of possible completions.

See Also
Source Editor

Unit Testing Top Previous Next

Purpose
Unit Testing involves testing individual units of a piece of software to make sure they act as intended.  The units tested are usually functions or class methods.

Usage
There are five ways that Rapise can help you Unit Test: 

1. Rapise methods support testing objects and methods in DLLs.
2. Rapise can test ActiveX objects and their methods through their COM Interface.
3. If you choose to write your Unit tests in a third-party tool, Rapise has a Command Line interface where you can access its functionality.
4. Test results are written to a TAP file, which allows integration with Unit Testing frameworks.
5. Rapise tests can be invoked from MbUnit and NUnit tests.

DLL Testing Top Previous Next

Purpose
You can create objects and invoke methods from both managed and unmanaged dlls.

Usage
Rapise provides API calls to work with managed DLLs.  The Windows object WScript can be used with unmanaged DLLs.

Managed DLLs

Unmanaged DLLs

var UserWrap = WScript.CreateObject("DynamicWrapper");
UserWrap.Register("shell32.dll", "ShellExecute", "I=hssssl", "f=s", "r=l");
UserWrap.Register("USER32.DLL", "MessageBoxA", "I=HsSu", "f=s", "R=l");
UserWrap.MessageBoxA( null, "" + elapsed, "Time Elapsed:",  0x30 );

Test Samples
There is a Samples folder in your Rapise directory.  There are two test samples that illustrate working with DLLs: 

See Also

Util.InvokeMember: Invoke a class method in a managed DLL. 
Util.CreateClassInstance: Creates an instance of a class in a managed DLL.
Util.SetFieldValue: Sets a field value in an object created with CreateClassInstance.

WScript.CreateObject("DynamicWrapper"): Create a DynamicWrapper object.  The Register and ShellExecute methods of the DynamicWrapper object can be used to invoke DLL methods as in the 
following example:

UsingDLLHandlerManaged
UsingDLLHandlerUnManaged

For more information on the WScript object, see: http://msdn.microsoft.com/en-us/library/at5ydy31(VS.85).aspx

COM Testing Support Top Previous Next

Purpose
Microsoft's Component Object Model (COM) is a standard for communication between separately engineered software components (source).  Any object with a COM interface can be created and used 
remotely.

Usage

Creating a COM Object
You can create a COM object using Windows' ActiveXObject class.  Once the object is created, method invocation is the same as with any other object in your program.  The methods available will 
depend on the object's COM interface.  The following example shows how to create an instance of the Word application and open a file.

var doc = new ActiveXObject("Word.Application");
doc.Documents.Open(wordFileName);

Test Samples
There are several test samples that show how to Unit Test application modules via COM interface:

See Also

UsingMSWord
UsingMSExcel
UsingMSAccess

Learn more about COM HERE.
Learn more about ActiveXObject HERE.

Custom Strings Top Previous Next

Purpose
Custom Strings allow you to associate meta data with your test.  Each custom string has a name and a value.  The value can be retrieved using the name.

Usage

Adding a Custom String
1. Open the NameValue Collection Editor dialog. Instructions are HERE.

Page 35 of 783/29/2012



Retrieving a Custom String value
Use the GetCustomString() method to retrieve a custom string's value.  See the example below:
 var factory = new ActiveXObject("Rapise.Test.Test");
 var test = factory.LoadFromFile( Global.GetFullPath("UsingCustomStrings.sstest"));
 var BugID = test.GetCustomString("BugID");
 var TestID = test.GetCustomString("TestID");

See Also

2. Press the Add button.
3. Fill in a name and value for the custom string.
4. Press OK.  The dialog will close.

NameValue Collection Editor Dialog
There is a sample test called UsingCustomStrings.

MbUnit Top Previous Next

Purpose
SeSMbUnit.vsi is a visual studio installer packaged with Rapise.  It facilitates calling Rapise tests from MbUnit tests.

Usage

Installation

C:\Program Files\Inflectra\Rapise\Extensions\UnitTesting\MBUnit\SeSMbUnit

Syntax
Use both the MbUnit.Framework and the SeSMbUnit namespaces:

using MbUnit.Framework;
using SeSMbUnit;

MbUnit uses the class attribute [Test] to identify test methods.  The corresponding attribute for SeSMbUnit is [SeSMbUnitTest(@"<path to .sstest>")].  Note that the SeSMbUnitTest attribute has a 
parameter, the file-path to the test that will be invoked.

The following example uses a test method simply as a wrapper for calling an .sstest:

[SeSMbUnitTest(@"T:\Samples\Cross Browser\CrossBrowser.sstest")]
public void TestIEandFirefox()
{

int exitCode = SeSMbUnitHelper.TestExecute();
Assert.AreEqual(0, exitCode);

}

Templates
SeSMbUnit.vsi will install a template for Visual Studio called SeSMbUnitTests.  The template includes the appropriate using statements and a blank test method.  You can insert additional 
SeSMbUnitTest methods by right-clicking in the editor in Visual Studio, and selecting Insert Snippet > SeSMbUnitTest.  The following code will be added:

[SeSMbUnitTest(/*Insert path to .sstest file which must be run.*/)]
public void TestSeS()
{

int exitCode = SeSMbUnitHelper.TestExecute();
Assert.AreEqual(0, exitCode);

}

You'll need to specify the file-path.

Samples
There is a sample dll you can run in MbUnit.  From the Rapise directory, you'll find it at: Extensions\UnitTesting\MBUnit\SeSMbUnit\SeSSamplesMbUnit\bin\Debug\SeSSamplesMbUnit.dll

See Also

You will need Visual Studio, MbUnit 3, and Gallio to use SeSMbUnit.  MbUnit is bundled with Gallio, which is available at www.gallio.org. 

To install SeSMbUnit, open the following directory:

Double-click SeSMbUnit.vsi.  The Visual Studio Content Installer will appear.  Select the components for the language you will use and then click Next.

MbUnit and related documentation can be found at www.mbunit.com

NUnit Top Previous Next

Purpose
SeSNUnit.vsi is a visual studio installer packaged with Rapise.  It facilitates calling Rapise tests from NUnit tests.

Usage

Installation

C:\Program Files\Inflectra\Rapise\Extensions\UnitTesting\NUnit\SeSNUnit

Syntax
Use both the NUnit.Framework and the SeSNUnit namespaces:

using NUnit.Framework;
using SeSNUnit;

NUnit uses the class attribute [Test] to identify test methods.  The corresponding attribute for SeSNUnit is [SeSNUnitTest(@"<path to .sstest>")].  Note that the SeSNUnitTest attribute has a parameter, 
the file-path to the test that will be invoked.

The following example uses a test method simply as a wrapper for calling an .sstest:

[SeSNUnitTest(@"T:\Samples\Cross Browser\CrossBrowser.sstest")]
public void TestIEandFirefox()
{

int exitCode = SeSNUnitHelper.TestExecute();
Assert.AreEqual(0, exitCode);

}

You will need Visual Studio and NUnit to use SeSNUnit.  NUnit is available at http://www.nunit.org/index.php?p=download.

To install SeSNUnit, open the following directory:

Double-click SeSNUnit.vsi.  The Visual Studio Content Installer will appear.  Select the components for the language you will use and then click Next.

Page 36 of 783/29/2012



For more details on using SpiraTest with Rapise, please refer to the separate "Using SpiraTest with Rapise" guide. 

Overview
SpiraTest is a web-based quality assurance and test management system with integrated release scheduling and defect tracking. SpiraTest includes the ability to execute manual tests, record the 
results and log any associated defects. Note: SpiraTeam is an integrated ALM Suite that includes SpiraTest as part of its functionality, so wherever you see references to SpiraTest in this section, it 
applies equally to SpiraTeam.

When you use SpiraTest with Rapise you get the ability to store your Rapise automated tests inside the central SpiraTest repository with full version control and test scheduling capabilities: 

You can record and create your test cases using Rapise, upload them to SpiraTest and then schedule the tests to be executed on multiple remote computers to execute the tests immediately or 
according to a predefined schedule. The results are then reported back to SpiraTest where they are archived as part of the project. Also the test results can be used to update requirements' test 
coverage and other key metrics in real-time. 

Connecting to SpiraTest
The first thing you need to do is to configure the connection to SpiraTest. To do this, click on the Options button in the Tools section of the Rapise Test ribbon: 

This will bring up the Options dialog box. Click on the Tools tab to bring up the settings related to the various Tools: 

Templates
SeSNUnit.vsi will install a template for Visual Studio called SeSNUnitTests.  The template includes the appropriate using statements and a blank test method.  You can insert additional SeSNUnitTest
methods by right-clicking in the editor in Visual Studio, and selecting Insert Snippet > SeSNUnitTest.  The following code will be added:

[SeSNUnitTest(/*Insert path to .sstest file which must be run.*/)]
public void TestSeS()
{

int exitCode = SeSNUnitHelper.TestExecute();
Assert.AreEqual(0, exitCode);

}

You'll need to specify the file-path.

Samples
There is a sample dll you can run in NUnit.  From the Rapise directory, you'll find it at: Extensions\UnitTesting\NUnit\SeSNUnit\SeSSamplesNUnit\bin\Debug\SeSSamplesNUnit.dll

See Also
NUnit and related documentation can be found at www.nunit.org

TAP Results Top Previous Next

Purpose
Rapise supports the Test Anything Protocol (TAP).  TAP specifies communication between unit tests and testing frameworks, such as MbUnit or NUnit.

Usage
The results of a Rapise test are saved to a TAP file in the same directory as the test.  Tap files have a .tap extension.

See Also
More information about tap is available at the TAP wiki: www.testanything.org
MbUnit
NUnit

SpiraTest Integration Top Previous Next

Page 37 of 783/29/2012



Click on the "Spira Connection Settings" button to bring up the dialog box that lets you configure the connection to SpiraTest: 

Enter the URL, login and password that you use to connect to SpiraTest and then click the "Test" button to verify that the connection information is correct. 

The "Default Repository Path" is a folder that used to store local copies of the non-absolute repositories. 
The "Root Folder" is used to specify the name of the top-level folder in the SpiraTest Document Repository that is used to store all the Rapise test scripts. By default this field is blank, meaning 
that all Rapise test cases will be saved as root-level folders in SpiraTest. 

You need to be running SpiraTest / SpiraTeam v3.1 or later to use the integration with Rapise.

Saving a Test to SpiraTest
To save the a Rapise test into SpiraTest you need to make sure that the following has been setup first: 

1. You have a project created in SpiraTest to store the Rapise tests in. The Rapise tests will be stored in a repository located inside the Project Home > Documents section of the project.
2. The user you will be connecting to SpiraTest with has the permissions to create new document folders. In SpiraTest v3.1 that means the user needs to be a Project Owner role, however in 

future versions it will not require such a high-priviledged role.
3. You have created the Test Case in SpiraTest that the Rapise test will be associated with. This is important because without being associated to a SpiraTest Test Case, you will not be able to 

schedule and execute the tests using SpiraTest and RapiseLauncher. 
4. You have created an AutomationEngine in SpiraTest that has the token name "Rapise". This will be used to identify Rapise automation scripts inside SpiraTest. 

Once you have setup SpiraTest accordingly, click on the Save to Spira icon in the File section of the Rapise Test ribbon: 

That will bring up the Save to SpiraTest dialog box: 

The first thing you will need to do is choose the SpiraTest project from the dropdown list. Once you have done that, the system will ask you to choose the local Repository path for the Rapise test. This is 
when the test will get saved-to locally before checking-in to from SpiraTest. Also it's where the test gets checked-out to if you open the test in the future. 

Page 38 of 783/29/2012



Once you have chosen the repository path, you need to expand the test case folders in SpiraTest and choose the existing Test Case that you want to attach the Rapise test to: 

When you expand the folders to display the list of contained test cases, it will display the name of the associated Rapise test script associated with it (to the right). If you are adding a new Rapise test, 
choose a test case that doeesn't have an associated Repository path. If you are updating an existing test, choose a test case that has the matching Repository path. 
Once you have chosen the appropriate test case, confirm the path of the test repository folder that will be created in SpiraTest (normally the default is fine). Then click the [Save/Synchronize] button: 

A dialog box will be displayed that lists all the files in the local working directory and shows which ones will be checked-in to SpiraTest. The system will filter out result and report files that shouldn't be 
uploaded. You can change which files are filtered out and also selectively include/exclude files. Once you are happy with the list of files being checked-in, click the [OK] button: 
The system will display the message that it's saving the files to the server: 

If an error occurs during the save, a message box will be displayed, otherwise the dialog box will simply close. 

Opening a Test from SpiraTest
To open a Rapise test from SpiraTest you need to make sure that the following has been setup first: 

1. You have already configured the connection to the SpiraTest service (see the instructions at the top of this page).
2. The user you will be connecting to SpiraTest with has the permission to view the project that the tests are being stored in. 

Once you have setup SpiraTest accordingly, click on the Open Test from Spira icon in the File section of the Rapise Test ribbon: 

That will bring up the Open Test from SpiraTest dialog box: 

Page 39 of 783/29/2012



The first thing you will need to do is choose the SpiraTest project from the dropdown list. Once you have done that, the system will ask you to choose the local Repository path for the Rapise test. This is 
when the test will get saved-to locally after checking-out from SpiraTest. 
Once you have chosen the repository path, you need to expand the test case folders in SpiraTest and choose the existing Test Case that you want to attach the Rapise test to: 

When you expand the folders to display the list of contained test cases, it will display the name of the associated Rapise test script associated with it (to the right). Choose a test case that has the 
matching Rapise test case listed to the right of it (in the Repository Path column). 
Once you have chosen the appropriate test case, confirm the path of the test repository folder that will be created in SpiraTest (normally the default is fine). Then click the [Load/Synchronize] button: 

A dialog box will be displayed that lists all the files on the server which will be downloaded from SpiraTest. You can change which files are to be downloaded. Once you are happy with the list of files 
being checked-out, click the [OK] button: 
The system will display the message that it's downloading the files from the server. If an error occurs during the download, a message box will be displayed, otherwise the dialog box will simply close. 

Viewing the SpiraTest Properties of a Test
To see which SpiraTest project and test case  the current Rapise test is associated with, click on the Spira Properties icon in the File section of the Rapise Test ribbon. This will bring up the Spira 
Properties dialog box: 

Page 40 of 783/29/2012



This will display the name of the current Rapise test together with the name of the SpiraTest project, test folder and test case that this test is associated with. 
If you would to save the current Rapise test into a new SpiraTest project or if you want to save it against a new test case in the same project, you must first unlink the test. To do this click on the Unlink 
from Test Case button. This will tell Rapise to remove the stored SpiraTest information from the .sstest file so that it can be associated with a new project and/or test case in SpiraTest. 
Warning: This operation cannot be undone so please make sure you really want to unlink the current test.

Using RapiseLauncher
RapiseLauncher is a separate application that installs with Rapise. It allows you to remotely schedule the automated tests in SpiraTest and have RapiseLauncher automatically invoke the tests 
according to the schedule. Details on using SpiraTest with RapiseLauncher to remotely schedule and execute tests is described in the separate "Using SpiraTest with Rapise" guide. This guide can be 
found in the Rapise program files folder. Click on Start > Programs > Inflectra > Rapise in Windows and you will see the shortcut for the guide. 

Checkpoints Top Previous Next

Purpose
A Checkpoint is defined by two things: (1) a location in the test execution path and (2) a subset of AUT state.  Each time the checkpoint executes, the AUT state is compared to a predefined value. 
 Discrepancies are noted, and may show a regression in program behavior.

Usage
A checkpoint can be added in two ways: 

(1) during recording, with the Verify Object Properties dialog, or 
(2) by manually adding an Assertion to the test script. 

See Also
Recording

Tests and Sub-Tests Top Previous Next

The concept of Sub-Test is an organic way to organize the whole work with Tests in organic way. By having sub-tests one may meet one of the following goals:

1. Create multiple test scenarios working with same set of Objects and Functions.
2. Organize different test scenarios into a single workspace.
3. Use Sub-test to make cross-browser tests

We will consider each of described goals separately. The test containing the sub-test(s) we will call base or parent test.

Make Multiple Test Scenarios with the Same Set of Objects

In this case 'parent' test contains all learned objects and user-defined functions. 

For example, the parent test may have objects "User Name", "Password", "Sign On". And function 
function Login(username, password)
{
   ...
}

SubTest1 may be used to check login with valid Credentials, SubTest1.js looks like:
function Test()
{
   Login("validuser", "validpassword");
   // Now check that login is successfull
   Tester.Assert("Login leads to welcome message: ", Global.DoWaitFor('Welcome_User'));
}

SubTest2 may be used to check login with invalid Credentials (i.e. it is a fail-test). SubTest2.js looks like:
function Test()
{
   Login("invaliduser", "invvalidpassword");
   // Now check that login is successfull
   Tester.Assert("Login leads to invalid user object: ", Global.DoWaitFor('Invalid_User'));
}

Function Login and objects Welcome_User and Invalid_User are defined in Test. The subtests are just implementing various scenarios for the same set of objects.

Page 41 of 783/29/2012



Organize different tests into a single workspace.

Each test has its own objects, functions and scenarios. 

The usage of such an approach is well demonstrated by example. We created a test called 'SampleMaster' and put all Rapise samples into it by using Add File context menu in the the Test Tree dialog. 
Finally the Files tree looks like:

All tests in this tree are independent. We use the Sample Master to manage all the tests from a single environment. 

Using Sub-Tests for a Cross-browser testing

See 'Cross Browser'.

Sub-Test Features

Sub-test may have its own nested sub-tests. For example, in the parent test contains reference to 'CrossBrowser' subtest having 'IE' and 'Firefox' subtests inside:

Sub-test options are available from the 'Tag' property in the 'Properties window:

Page 42 of 783/29/2012



The following options are available in the context menu fore each of the sub-tests:

Play: Execute selected sub-test
Record: Start recording into selected sub-test
Save: Save options of a sub-test
Show Objects: Show objects form a sub-test in the Object Tree
Delete: Remove reference to a sub-test from its parent test

Dialogs, Views, and Menus Top Previous Next

This section details the Rapise GUI.  Each subsection describes the function of a particular Dialog, View, or Menu.  The purpose and consequences of all buttons, options, lists, and check boxes are 
listed. 

Accessible Events Dialog Top Previous Next

Screenshot

Purpose
To display Microsoft Active Accessibility event notifications.

How to Open
Press the Monitor Events button in the SeS Spy Dialog.

Widgets

See Also

Skip: While the Skip option is selected, the Accessible Events Dialog stops printing event notifications.  The number of notifications skipped is printed to the right of the word Skip:

Ignore Mouse Move: Do not print notifications of mouse movement.
Clear: Clear the Accessible Events dialog.

Microsoft Active Accessibility is described here http://msdn.microsoft.com/en-us/magazine/cc301312.aspx

Create New Test Dialog Top Previous Next

Screenshot

Page 43 of 783/29/2012



Purpose
Create a new test.

How to Open
Menu Button > New Test.

Create Sub-Test Dialog Top Previous Next

Screenshot

Purpose
Create a sub-test.

The Sub-Test is always created inside the folder of its parent test. If parent test is saved to a new location then sub-test is also saved as a sub-folder of a new location.

How to Open
Choose Create Sub-Test... in the context menu of a folder in Test Files dialog.

New test should have own set of Objects: Uncheck it if you want to create a scenario re-using objects from parent test.
New test should have own User-defined functions: Uncheck it if you want to create a scenario re-using utility functions from its parent test.

Content View Top Previous Next

Screenshot

Page 44 of 783/29/2012



Purpose
To view and edit files.  This includes javascript (js), report (trp), and excel (xls) files.

How to Open
Open a file using the Test Files Dialog.  The file will open inside of the Content View.

Enter filter criteria for... Dialog Top Previous Next

Screenshot

Purpose
Allow more than one filter criteria for the same column.

How to Open
In the Report Viewer, open the drop-down menu for one of the filter cells; select the Custom option (see below):

Conditions

You may specify as many conditions as you like.  Each condition has two properties, a Matching Criteria on the left and a filter value on the right.  The filter value is a string, and the matching criteria
specifies what constitutes a match.   For more details, look HERE.

Radio List

Page 45 of 783/29/2012



Buttons

You can select a condition by pressing the button to the left of it:

And conditions:  All conditions must be true to constitute a match.
Or conditions: At least one condition must be true to constitute a match.

Add a condition: Add a extra condition row.
Delete Condition: Delete the selected condition.

OK: Close the dialog and apply the filter.
Cancel: Close the dialog.  Do not apply the filter.

Errors View Top Previous Next

Screenshot

Purpose
The Errors View displays execution error details.  Execution errors are those that cause Recording or Playback to stop.

How to Open
The Errors View is part of the Default Layout.

Error Message

Double click on an error message to go to the corresponding source line.

Widgets

The text box is a search box.

The icons from left to right are Find Next Entry , Copy Selected , Clear All Text , and Select All Text .

Find and Replace Dialog Top Previous Next

Screenshot

Purpose
To find and replace text in files displayed in the Rapise Content View.

How to Open
Select the Find in Files button on the Ribbon (Test tab > Tools menu).

Page 46 of 783/29/2012



Find in Files Tab

Find and Replace Tab
There is only one significant difference between the Find in Files Tab and Find and Replace Tab: the Replace with text-box.

Find what: Place the string you would like to search for in the Find what text box.

If the Test files checkbox is checked, the search will take place in the project directory and its sub-folders.

Directory path: Use the Directory Path text-box to specify the directory in which to search.  The Directory path text-box cannot be accessed (and is ignored) if the Test files checkbox is checked. 

Check the Include sub-folders option to search recursively from the directory specified in the Directory Path text-box. The Include sub-folders option cannot be accessed if the Test files checkbox is 
checked. 

Match case option: If unselected, case is ignored in the search.

Match whole word option:  If set to true, parts of words will not count as matches.

Look in this file type: Search only files with the specified file type.

Replace with text-box: All occurrences of the string in the Find what text-box will be replaced with the string in the Replace with text-box when you press the Replace button.

Find Results View Top Previous Next

Screenshot

Purpose
Displays results for the Find and Replace Dialog.

How to Open
The Find Results view is part of the Default Layout.

Messages

Double click on a message to go to the corresponding source line.

Widgets

The text box is a search box.

The icons from left to right are Find Next Entry , Copy Selected , Clear All Text , and Select All Text .

Find Text dialog Top Previous Next

Screenshot

Purpose
Find occurrences of the Search Term text in the currently visible Source Editor.

How to Open

Ribbon > Edit Tab > Search menu > Find button 

NameValue Collection Editor Dialog Top Previous Next

Screenshot

Page 47 of 783/29/2012



Purpose
To specify Custom Strings and their values.

How to Open
Open from the Settings Dialog, CustomStrings option:

Widgets
Add a custom string.  If you press Add, you'll see this:

Remove: removes selected custom string.
OK: Save changes and close dialog.
Cancel: Close dialog without saving changes.

Object Tree Dialog Top Previous Next

Screenshot

Purpose
Display learned objects. 

How to Open
The Object Tree dialog is part of the Default Layout.

Context Menu (root node)
Right click the Object Tree node to see:

Context Menu (object)
Right click on an object in the Object Tree dialog to see:

Refresh checks for new objects to display.

Page 48 of 783/29/2012



Flash opens the application/url where the object is located.  A frame will blink around the object to show you where it is on the page.

Options Dialog Top Previous Next

Screenshot

Purpose
Use the Options dialog to change Rapise settings.  Your changes will apply to all tests.

How to Open
Press the Options button on the Ribbon (Test tab > Tools menu).

Misc

Set SplashScreen to False to prevent the splash screen from appearing.

Settings

The Basic frame is on the left and the Modern frame is on the right:

SplashScreen: A splash screen is the image that appears while a program initializes.  The Rapise splash screen looks like this:

AutoReloadModifiedFiles: If set to True, any files you modify outside of Rapise are automatically reloaded in Rapise. 

DefaultFolder specifies  where new tests are kept before you explicitly save them.  The location is relative to the Rapise executable.

FrameStyle: Specifies which frame to draw around objects when you Record, Learn, and Spy. 

LoadLastTestOnStartup: If set to True, Rapise will open the last test you worked on and saved.  If set to False, Rapise will create a new test named MyTest<#> where <#> is an integer.  A folder for 
MyTest<#> is created in the folder specified by the DefaultFolder option.

NormalizeFileName: If set to True, files are referred to (in the *.sstest file) using a a path relative to the *.sstest file.  Otherwise, their absolute path is used.

RecentTests: The maximum number of recent files displayed in the Recent Tests list.  To see the Recent Tests list, open the Application Menu: 

Page 49 of 783/29/2012



Tools Tab

Remember Debugger Layout: If True, Rapise will remember the window layout for debug mode separately. For example, this may be useful if you want to work full screen while authoring the Test 
and half-screen to debug. This way the AUT and the Rapise debugger fit on the screen. 

ShowStartPageOnStartUp: If True, the Start Page will open automatically when Rapise is opened. 

StyleLibrary: determines the color scheme of the Rapise window.  If you click on StyleLibrary, you'll notice that a drop down arrow appears to the right.  Press the arrow to see all of the Style options:

Build OCR Font Database: Pressing the Build OCR Font Database button updates the list of screen fonts that Rapise recognizes when using an OCR object. Whenever you install new Fonts onto the 
computer you should click this button to have then added to the Rapise font database.
Reset Layout: Pressing the Reset Layout button restores the default layout.  Rapise will restart.
Spira Connection Settings: Pressing the Spira Connection Settings button takes you to a dialog box that lets you change how Rapise is integrated with the SpiraTest test management system. It will 
let you change the URL, username and password used to connect. 

Output View Top Previous Next

Screenshot

Purpose
The Output View displays Rapise output.  The amount of output depends on the Verbosity Level.

How to Open
The Output view is part of the Default Layout.

Writing to the Output View
Use the global Log() function to write to the Output View.

Widgets

Page 50 of 783/29/2012



The text box is a search box.

The icons from left to right are Find Next Entry , Copy Selected , Clear All Text , and Select All Text .

Properties Dialog Top Previous Next

Screenshot

Purpose
To display the properties of the object, file, or folder you last clicked on.  Objects are in the Object Tree Dialog and files/folders are in the Test Files Dialog.

How to Open
The Properties Dialog is part of the Default Layout.

Recording Activity Dialog Top Previous Next

Screenshot

Purpose
The Recording Activity (RA) Dialog is used for Recording, Analog recording (absolute and relative), Object Learning, and creating Simulated Objects.

How to Open

The Grid
As you interact with the AUT (Application Under Test), your actions are recorded in the grid of the RA dialog.  The following screenshot shows the RA dialog after two interactions with www.google.com: 
(1) first, Inflectra was entered into the query text box and (2) the Google Search button was then pressed.

Context Menu
If you right click in the grid, you'll see a context menu with three options:

1. Open the SAR Dialog.  Instructions are HERE.
2. You must select two things: (1) which recording library to use during the recording session and (2) which process/program to record.   Look HERE for more information on using the SAR Dialog.
3. Press either Select or Run on the SAR dialog to open the RA Dialog.

Delete Action removes the selected row.
Edit Action opens the Action Editor Dialog.  This is also opened by double-clicking a grid entry.

Page 51 of 783/29/2012



Widgets

Place the mouse cursor over the object you wish to learn.  It should become highlighted with a purple box.  Press Ctrl+2 while the object is highlighted.  You will see a line added to the RA dialog, 
signifying that the object was learned. 

An object can be learned if it matches a rule specified in the Recording/Learning libraries available.  The drop-down menu lists the possible rules for learning objects in the current application.  If you 
cannot learn an object with one rule, try another in the list.  Create a Simulated Object only if the other, more flexible alternatives have been exhausted.

Learning using a specific rule:

2. Select an object on the screen and make sure it is highlighted with a rectangle
3. Press Ctrl+2 to learn the object

Press Try Action and Rapise will execute the action.

Verify: Press to open the Verify Object Properties dialog.

The Learn Shortcut: Use to learn an object.

The Spy Button: The Spy Button opens the SeS Spy dialog.  The SeS Spy dialog allows you to view the state of the objects in your program.  Viewing object state is called Object Spying.  The SeS 
Spy dialog is described here.

Pick Object: Use If the object you wish to learn is invisible (covered by another object). Pick Object is disabled for Internet Explorer and Firefox recording.
1. The Pick Object button will open the SeS Spy Dialog.
2. Spy on the obstructing object.  (Press Start Tracking, mouse over the object, press CTRL+G)
3. Select the item you wish to learn from the Tree section.
4. Press the Learn Selected button.

The Pause Button: The Pause Button on the RA dialog temporarily stops Recording.  Any interacting you do with the AUT is ignored.  When you press the Pause Button, the title of the button 
changes to Resume.  Press the Resume button to continue recording.

The Analog Button: The Analog button begins Analog Recording.  Analog Recording tracks mouse movements, keyboard inputs, and clicks.  To end Analog Recording, press CTRL+Break.

The _Simulated Drop-down Menu:

1. Double click on a rule in the drop down list.  The button text should change to the text that you selected
2. Press the button

The Cancel Button: The Cancel button stops Recording, closes the RA dialog, and discards any actions recorded or objects learned during the Recording session.

The Finish Button: The Finish button ends the Recording session.  The RA dialog is closed, and the information collected during Recording is used to create a script.  The script is displayed.

Transparent Option: While the RA dialog is open, it is always on top.  The Transparent checkbox makes the RA Dialog transparent so that you can interact with objects behind it.  The image below 
illustrates the difference:

Top Previous Next

Page 52 of 783/29/2012



Replace Text Dialog
Screenshot

Purpose
Replace occurrences of the Search Term text with the Replacement Text in the currently visible Source Editor.

How to Open
Ribbon > Edit Tab > Search menu > Replace button.

Report Viewer Top Previous Next

Screenshot

Purpose
The Report Viewer displays test result (trp) files.

How to Open
Use the Test Files Dialog to open a report (trp) file.  The report file will be opened in a Report Viewer in the Content View.  The Report Tab of the Ribbon will also open.

Or, you can Playback the test script.  The report file will display in a Report Viewer after the test completes.

See Also
For more info on Reports, see Automated Reporting.
For information on manipulating reports, see Ribbon: Report.

Ribbon: Test Top Previous Next

Screenshot

Purpose
The Test tab provides tools to help with creating and executing tests.

How to Open
The Test tab is always available.

File

Save the test.
Open a test.

Page 53 of 783/29/2012



Recording and Learning

Debugging

Executing

Tools

Help

Save As allows you to create a new, differently named copy of the test you are editing. 
Save to Spira allows you to save a Rapise test so that it is stored in a SpiraTest test management repository. 
Spira Properties allows you to see the name of the SpiraTest project and test case that the current Rapise test is linked to. 
Open from Spira allows you to open a Rapise test that is stored in a SpiraTest test management repository. 

Press the Record/Learn button to open the Recording Activity Dialog.

The top drop-down list specifies if you would like to use an External Debugger.  If so, you can either connect on execution (the Run with External Debugger option) or only connect if an error occurs (the 
Run External Debugger on Error option). 
The lower drop-down list controls the Verbosity Level. 

Press Play to execute the test script (*.js) file associated with the open test.  You can change which test script to open in the Settings Dialog.  The test script is specified by Settings > ScriptPath. 

The Spy button opens the SeS Spy Dialog. 
Press the Options button to open the Options Dialog. 
The Find in Files button opens the Find and Replace Dialog.

The Help button opens the Rapise user's manual and makes the Contents tab visible. 
The Search Help button opens the Rapise user's manual and makes the Search tab visible. 
The Help Index button opens the Rapise user's manual and makes the Index tab visible. 
The Start Page button opens the Rapise Start Page. 

Ribbon: Report Top Previous Next

Screenshot

Purpose
The Report tab is for use with report (trp) files.

How to Open
The Report tab is available anytime you have a report (trp) file visible in the Content View.

File

Export

The drop-down menu contains a history of previously opened reports.
Press Plain to view test steps, assertions, and messages aligned in a table.
Press Hierarchical to more clearly see what assertions, messages, and data are associated with which test steps.

Press to save the report as an excel file.

Page 54 of 783/29/2012



Layout

Data

Display

See Also

The drop-down menu lets you choose between previously saved layouts.
You must press Save Layout to keep your layout changes after closing Rapise.
Press Reset Layout to undo any changes you've made.

Press Choose Columns to hide or reveal report columns.
Merge Cells: Merge identical consecutive cells.

Images: Toggle between hiding and revealing images.
Collapse: Collapse the report to show only the top level.  What is visible will depend on how the report is sorted.
Expand: Expand all report rows.

Automated Reporting

Ribbon: Spreadsheet Top Previous Next

Screenshot

Purpose
The Spreadsheet tab is for use with excel (xls) files.

How to Open
The Spreadsheet tab is available anytime you have an excel (xls) file visible in the Content View.

File

The Reload button reloads the excel file from disk.  Use it if the excel spreadsheet was modified by an external application after you opened it in Rapise.

Ribbon: Edit Top Previous Next

Screenshot

Purpose
The Edit tab of the Ribbon provides tools for editing script files.

How to Open
The Edit tab is available anytime you have a javascript file visible in the Content View.

File

Clipboard

The Save button (Shortcut: CTRL+S) saves the script file you are editing. 
The Save As button allows you to create a new, differently named copy of the script file you are editing.

Page 55 of 783/29/2012



History

Search

Font

Debug

The Paste button (Shortcut: CTRL+V) pastes from the clipboard. 
The Cut button (Shortcut: CTRL+X) erases whatever text you have highlighted, and copies it to the clipboard.
The Copy button (Shortcut: CTRL+C) copies whatever text you have highlighted to the clipboard.

The Undo button (CTRL+Z) reverses the last deletion or insertion made in the Source Editor. 
The Redo button (CTRL+Y) reverses the last undo action.

The above text box is a search box.

Pressing the find button  opens the Find Text dialog.
The Replace button opens the Replace Text Dialog.

Use the above font and size drop-down menus to change the text appearance.  The entire file will be affected.

Press the Toggle Breakpoint button (Shortcut: F9) to insert or remove a breakpoint at the current cursor position.

Ribbon: Debugger Top Previous Next

Screenshot

Purpose
The Debugger Tab provides tools for use with the Internal Debugger.

How to Open
The Debugger Tab is available while the Internal Debugger is being used.  To use the Internal Debugger, first enable it, then Playback your script.  Instructions for enabling the Internal Debugger are 
HERE.

Debugger
Run (F5): Continue executing the script.
Step In (F11): Step into a function/procedure.
Step Out (Shift+F11): Continue until the current procedure is exited. 
Step Over (F10): Go to the next line in the current procedure/function. 
Stop Debugger (Shift+F5): Stop executing the script and exit the debugger.
Break (F9): Create a breakpoint in the script at the cursor.

Select an Application to Record... Dialog Top Previous Next

Screenshot

Page 56 of 783/29/2012



Purpose
The Select an Application to Record... (SAR) Dialog appears before Recording takes place.  It queries the user for which program to record, as well as what Recording Library to use. 

If you are recording the same application for the second time then SAR is not shown. The recording proceeds to last used application if it is still available on the screen.

How To Open
To open the SAR Dialog, press the Record/Learn button on the Ribbon (Test tab > Recording & Learning menu):

Libraries

The Library table lists the available Recording Libraries.  Select the one appropriate to the process/program you will record.  If you select Auto, Rapise will attempt to choose the correct recording library 
for you.  See the Recording Library section for more information.

Available Applications 

The Available Applications table lists all of the processes running at the time you open the SAR dialog.  If the process you would like to record is already open, you can select if from the table.  Pick the 
appropriate recording library (above) first before you pick an application to record; your application choice will become unselected if you do not do it last.

Widgets

Run Application Tab

The Cancel button closes the dialog.
Show All: While unchecked only top level application windows reflected in the Windows Task Bar are shown in the 'Available Applications' list.  Check this and press Refresh to see all top level 
windows available on the screen.
Refresh List: Press to refresh the Available Applications table.  After refreshing, you will see processes that began after the SAR dialog was opened.
Select button: To record a process from the Available Applications table, select the process and then press the Select button.

Page 57 of 783/29/2012



Path drop down list: If the program you would like to record is not already open, you can specify its path here.  If the program is already running, you can select it from the Available Applications
table.
Browse button: Browse for an application to open and record.
Run button: To record a program that is not currently open, fill in the Path text-box and press the Run button.
The Cancel button closes the dialog.

SeS Spy Dialog Top Previous Next

Screenshot

Purpose
The SeS Spy dialog is used to Object Spy.

How to Open
There are three ways to open the SeS Spy dialog: 

Start Tracking
The Start Tracking button (or CTRL+G) causes Rapise to enter Tracking Mode. In Tracking Mode, Rapise investigates the object under your mouse.  It identifies the object's type and learns the object's 
properties.  As you move your mouse, the objects you point to are highlighted (a box is drawn around them). 

Stop Tracking
The Stop Tracking button is only visible in Tracking Mode.  Press Stop Tracking (or CTRL+G) to exit Tracking Mode.  The SeS Spy dialog will display information for the last object highlighted.

Maximize/Minimize buttons

The maximize  and minimize  buttons control the appearance of the dialog.  They either hide or make visible the sections to their right or below.  See the example below.  The button highlighted in 
yellow in the left image is pressed to get the image on the right.  Changes are surrounded with a red box.

1. Press the Spy Button on the Ribbon (Test tab > Tools menu) 

2. Press the Spy Button on the Recording Activity Dialog
3. Press the Pick Object button on the Recording Activity Dialog.  Note: If you use this method, the dialog has an extra Learn Selected button.

Page 58 of 783/29/2012



Accessible Object

The Accessible Object section of the SeS Spy dialog shows properties of the object that are visible through the Microsoft Active Accessibility interface.

Tree
The spied upon object and its children are displayed here.

Properties
Object fields and field values are displayed here.

Tools

HWND Object

The HWND Object section of the SeS Spy dialog shows properties of the object that are visible with its HWND handle.

Tree
The spied upon object and its children are displayed here. 

Properties
Object fields and field values are displayed here.

Tools

See Also

Mouse Button Click: Emulate Left mouse click for the item selected in Spy tree.
Default Action: Execute DoDefaultAction for given accessible object.
Set Selection: Perform accSelect using the option flags set in the corresponding checklist (above).

Mouse Button Click: Emulate Left mouse click for the item selected in Spy tree.
Highlight: Draw rectangle surrounding selected object (HWND or Accessible).
Monitor Events opens the Accessible Events Dialog.

Microsoft Active Accessibility is described here http://msdn.microsoft.com/en-us/magazine/cc301312.aspx
HWND is described HERE.

Settings View Top Previous Next

Screenshot

Page 59 of 783/29/2012



Purpose
Use the Settings Dialog to change test specific settings.

How to Open
The Settings dialog is part of the Default Layout.

Advanced

Execution

Recording

var saved_script_objects={
   Balance:{"version":0,"object_type":"SeSSimulated","object_name":"Transaction Completed Successfully\n\nAccount 00000005  Balance:1046.00","object_class":"Static","object_role":"ROLE_
};

If True, the object definition will be written in a manner that takes more space, but is easier to read and change:

var saved_script_objects={
   Balance:{
   "version": 0,
   "object_type": "SeSSimulated",
   "object_name": "Transaction Completed Successfully\n\nAccount 

00000005  Balance:1046.00",
   "object_class": "Static",
   "object_role": "ROLE_SYSTEM_STATICTEXT",
   "object_text": "Transaction Completed Successfully\n\nAccount

 00000005  Balance:1046.00",
   "locations": [
      {
         "locator_name": "Location",
         "location": {
            "location": "4.4.4",
            "window_name": "SmarteATM",
            "window_class": "#32770"
         }
      },
      {

//section omitted for brevity
      }
   ]
}
};

Objects that were learned in previous recordings are affected by the value of BeautifySavedObjects.

Screen Capture

Capture Execution: Set this to True if you want to save screen images for each recognized object during playback. 
Capture Recording: Set this to True if you want to save screen images for each action during recording. 
Include in Report: Set this to True to include the saved images in the execution report during playback. 
Widget Only: Set this to True to only save the widget area in the screenshot, as opposed to the whole window. 

Settings

CommandLine is a freeform text box.  Use it to specify values for global variables (beginning in g_) to pass the recorder and player.  You can view which global variables are available in the source files

CacheObjects: Remember object locations and try to reuse them for speed.  This is helpful with dialog based applications.
CommandInterval: Time interval (in milliseconds) between script commands during script execution.
IterationsCount: Your test script will be executed this many times consecutively during Playback.
ObjectLookupAttemptInterval: This is the time Rapise will wait between attempts to locate an object.
ObjectLookupAttempts: This is the number of times Rapise will attempt to locate an object.

BeautifySavedObjects affects how the Script Recorder writes object information to your test script.  If False, the object definition will be written as a single line:

Page 60 of 783/29/2012



UserFunctionsPath: Path (relative to the test directory) to the file with user-defined functions utilized in this test.  Normally this file has name in form *.user.js.
CustomStrings: Click to open the NameValue Collection Editor Dialog.
ObjectsPath: Path (relative to the test directory) to file containing object tree information. This file contains saved_script_objects structure with all object locators gathered during recording and learning. 
ReportPath: Path (relative to the test directory) to the test's report file. Normally this file has extension form .trp which stands for Test Report.
ScriptPath: Path (relative to the test directory) to the test script.
TestPath: Path to the test definition file (*.sstest).

Source Editor Top Previous Next

Screenshot

Purpose
To display and edit javascript files.  The editor supports Syntax Highlighting, Syntax Checking, Code Folding and Code Completion.

How to Open
Use the Test Files Dialog to open a javascript file.  The javascript file will be opened in a Source Editor, in the Content View.  The Edit Tab of the Ribbon will also open.

Spreadsheet Viewer Top Previous Next

Screenshot

Purpose
To display excel (xls) files.

How to Open
Use the Test Files Dialog to open an excel file.  The excel file will be opened in a Spreadsheet Viewer, in the Content View.  The Spreadsheet tab of the Ribbon will also open.

Start Page Top Previous Next

Screenshot

Page 61 of 783/29/2012



Purpose
To display the latest news and information regarding Rapise.

How to Open
The Start Page opens automatically with Rapise. This behavior can be modified in the Options dialog using the ShowStartPageOnStartup setting.

Test Files View Top Previous Next

Screenshot

Purpose
The Test Files dialog allows you to navigate and alter the Test hierarchy, including the following:

How to Open
The Test Files dialog is part of the Default Layout.

Context Menu (Folder)
Right click on a folder to see:

Context Menu (File)
Right click on a file to see:

the script
Report files (*.trp)
Images captured during execution using Checkpoints
Analog recording files (*.arf)        
data files

Create File: Create and add a new file to the test.
Add File: Add an existing file to the test.
New Group:  Create a logical grouping of files in the test. This will not add a folder to the file system.
Reload: Refresh group contents. Use it for filter groups  ('IsFilterGroup' is set to 'True' in group properties), e.g. for Report group.
Create Sub-Test...: Launch Create Sub-Test dialog.
Remove from Test: Remove the selected grouping from the test.  This does not delete included files from your hard disk.
Remove All from Disk: Remove all files included into the selected grouping from your hard disk.

Page 62 of 783/29/2012



Filter Groups
Filter groups read its contents from disk according to specified path and wildcard. You may setup a filter group by editing group properties:

Open: Open the file in Rapise.
Open Externally...: Open the file using associated program. E.g. if a Notepad is registered in Windows to open TXT files, then TXT file will be opened by Notepad.
Remove from Test: Remove the file from your test.  This does not delete the file from your hard disk.
Remove from Disk: Remove the file from your test and hard drive.

FilterPath: Root path to find files via wildcard (valid only if 'IsFilterGorup' is 'True').
FilterWildcard: Filter wildcard (valid only if 'IsFilterGorup' is 'True').
IsFilterGroupt: 'True' if directory should show the list of all files matching 'FilterWildcard' belonging to 'FilterPath'.
Name: Group name.

Variable/Call Stack View Top Previous Next

Screenshot

Purpose
Lists the functions in the current call stack.  Beneath each function, variables/objects local to that function are listed with their value and type.

How to Open
Begin debugging a script.  The Variable/Call Stack View will open automatically.

Go to a function definition
Double click on a function to go to its definition.

Verify Object Properties Dialog Top Previous Next

Screenshot

Purpose
Use the Verify Object Properties dialog during recording to add checkpoints.

How to Open

Create a Checkpoint
Your checkpoint will be associated with a particular object.  That object's properties will be listed in the Verify Object Properties dialog.  Check those properties that you wish to verify during playback. 
 Enter expected values for the selected properties in the Value column. Note: The Bitmap and BWBitmap properties are images of the object.

1. First, open the Recording Activity Dialog.
2. Position the mouse over an object and press Ctrl+1, or
3. Press the Verify button and then click the target object with the mouse cursor.

Page 63 of 783/29/2012



Press the OK button.  The Verify Object Properties dialog will close, and the Recording Activity dialog will contain a new Verify action:

The generated script will have a corresponding assert statement:

See Also
Recording
Assert Statements

Warning View Top Previous Next

Screenshot

Purpose
To display syntax error messages as you edit javascript files.

How to Open
The Warning view is part of the Default Layout.

Error Message

Double click on an error message to go to the corresponding source line.

Widgets

See Also

The text box is a search box.

The icons from left to right are Find Next Entry , Copy Selected , Clear All Text , and Select All Text .

Syntax Checking

Watch View Top Previous Next

Screenshot

Page 64 of 783/29/2012



Purpose
To input expressions and view their values as the script executes.

How to Open
Begin debugging a script.  The Watch View will open automatically.

Inputting an Expression

Widgets

From left to right: Copy (an entire row) , Copy Watch Value , Delete .

1. Click the first blank line:

2. Double click on the highlighted line, under the Expression column.  A text box will appear.

3. Input the expression you wish to investigate. Press Enter.

HowTos Top Previous Next

This section focuses on specific tasks that a Rapise user might want to accomplish.

Open a Test Top Previous Next

You can open a test in two ways: (1) From the Ribbon, and (2) From the Application menu.

Ribbon
Select the Open option from the File menu on the Test Tab of the Ribbon:

You can also open a test that is stored in SpiraTest (our web-based test management system) instead of the local filesystem. This is done by clicking on the Open Test from Spira option instead. More 
details on using Rapise with SpiraTest can be found in the SpiraTest Integration section. 

Application Menu
Open the Application Menu by clicking on the Menu Button at the top left of the Rapise window:

The Application menu has an Open Test option, and a list of Recent Test from which you may choose:

Page 65 of 783/29/2012



You can also open a test that is stored in SpiraTest (our web-based test management system) instead of the local filesystem. This is done by clicking on the Open Test from Spira option instead. More 
details on using Rapise with SpiraTest can be found in the SpiraTest Integration section. 

Create a New Test Top Previous Next

Select the Menu Button at the top left of the screen: 

A menu will open up:

Select the New Test option.  The Create New Test dialog will appear.  Follow the instructions on this dialog.

Restoring the Default Layout Top Previous Next

There are two ways to the restore the default layout: (1) On Startup, and (2) In the Options Menu.

On Startup
Press the Shift key while you open Rapise.  Keep the Shift key down until Rapise is done initializing.

Options Menu
In Rapise, select the Options button.  It is on the Ribbon in the Tools section:

The Options dialog will appear.  Go to the Tools tab:

Page 66 of 783/29/2012



Select the Reset Layout button.  Rapise will restart.

Change Test Entry Point Top Previous Next

Rapise assumes that the entry point of a test - Test() function is defined in a file specified in ScriptPath property of the Settings dialog. If you want to place Test() function in another file then do not forget 
to update ScriptPath property of the test.

Do Absolute Analog Recording Top Previous Next

Let's once again use our trusty over-simplified TwoDialogs sample application to learn how to use absolute analog recording and use it to discover the value as well as the dangers associated with 
absolute analog recording.
Steps:
(1) Run TwoDialogs sample AUT.  By default this will be located in C:\Program Files\Inflectra\Rapise\Samples\TwoDialogs\TwoDialogs.exe
(2) Start Rapise and create a new test and call it TwoDialogsAnalogAbsolute.
(3) Press the Record/Learn button in the toolbar of Rapise.
(4) When the "Select an Application to Record" dialog is displayed, choose the TwoDialogs.exe application and ignore the library list - we will not be using any library for analog recording.  Press the 
Select button.
(5) The Recording Activity dialog will be displayed with an empty grid.
NOTE:  this recording session is going o be a little different from previous sessions.  Previously we could interrupt our object-related recording/learning with other activities and because Rapise was 
recording activity related only to the target application, our recording or object learning would be unaffected.  However, in analog recording, Rapise is monitoring the mouse and keyboard for the entire 
system - for all applications.  This means that if you answer an email in the middle of analog recording, or log in to a secure system, all the steps including mouse movement, keystrokes, etc., will all be 
recorded.  However, note also that screen contents are not recorded by Rapise.
(6) If the TwoDialogs UI has been occluded, bring it back to the front so you don't have to hunt for it when you start recording.
(7) When you're ready to record the session, hit Ctrl+4 on the Recording Activity dialog.

NOTE: Pressing the Analog button on the Recording Activity dialog starts a relative analog recording session.  Use the Ctrl+4 key sequence to start the absolute analog recording session.
Rapise will begin recording all mouse and keyboard activity until you stop the recording.
Note also that the prompt in the notification/status area of the Recording Activity dialog is different from that for relative analog. It tells you that "Your mouse and keyboard activity is now being recorded."

A minimized window will be created that indicates that analog recording is in progress and allowing you to stop the recording.

(7) Go to the TwoDialogs AUT and click anywhere in the application's window to start the analog recording.
Click the mouse on the empty "Please enter your name" text box.
Type a name in the text box.
Hit the <tab> key or click the left mouse button to advance the input position to the second text box.
Type another name.
Move the mouse to the OK button and press the mouse left button.

(8) When you have recorded enough, switch to the Analog Recording dialog box and press the close button or hit the keys Ctrl+Break.
NOTE: If you use the "close" button on the Analog Recording dialog, the movement of the mouse to the Analog Recording dialog, and the mouse-click on the Close button will be recorded as part of the 
analog recording output.  This might not be a desirable outcome at playback time because the Analog Recording dialog will not be present and the mouse click will be played in a potentially random 
place on the screen.  For this reason, Ctrl+Break is probably a better option to terminate analog recording.
NOTE: The grid will have no entry added until you end the analog recording with the Close button in the Analog Recording dialog.  When you do, it will add an entry to the grid.

Page 67 of 783/29/2012



(9)   You can now record additional analog sessions, if you wish.
(10) You can record normal object activity before and/or after the analog recording.  When you have finished all recording press the Finish button or hit Ctrl+3.  Notice that the Analog entry is added to 
the grid.
(11) The Rapise screen will now be restored and will have placed focus in the editor pane of the Rapise with TwoDialogsAnalogAbsolute.js script displayed.  You should see code something like the 
following:

//Plays recorded events from "Analog\Analog0003.arf" file
SeS('Simulated').DoAnalogPlay("Analog\\Analog0003.arf");

(12) Press the Play button on the Rapise toolbar to playback the recording you made.  Be sure not to interfere with the mouse or keyboard whilst the recording is playing back.
NOTE: You will see all mouse and keyboard activity reproduced as the analog recording plays.  The recording will start from the point where you left-clicked the mouse to begin the recording (step 7 
above) and will end with clicking the close button in the Analog Recording dialog or at the last action before you pressed Ctrl+Break.
(13) When the analog playback is complete, use the mouse to move the Two Dialogs AUT to a different location on the screen.  Play the recording again, and watch the operation unfold.  The most 
important thing to realize is that the absolute analog recording will playback the recording wherever the application is positioned on the screen wherever the AUT was positioned when you made the 
recording.  Absolute analog recording records relative to the top-left corner of the system screen.  Try this for yourself, but be sure to minimize all applications before starting.

Do Relative Analog Recording Top Previous Next

Let's once again use our trusty over-simplified TwoDialogs sample application to learn how to use relative analog recording.
Steps:
(1) Run TwoDialogs sample AUT.  By default this will be located in C:\Program Files\Inflectra\Rapise\Samples\TwoDialogs\TwoDialogs.exe
(2) Start Rapise and create a new test and call it TwoDialogsAnalogRelative.
(3) Press the Record/Learn button in the toolbar of Rapise.
(4) When the "Select an Application to Record" dialog is displayed, choose the TwoDialogs.exe application.  Since we will not be using a library for this recording, the library selection is irrelevant.  Press 
the Select button.
(5) The Recording Activity dialog will again be displayed with an empty grid.
NOTE:  this recording session is going o be a little different from previous sessions.  Previously we could interrupt our object-related recording/learning with other activities and because Rapise was 
recording activity only related the target application, our recording or object learning would be unaffected.  However, in analog recording, Rapise is monitoring the mouse and keyboard for the entire 
system - for all applications.  This means that if you answer an email in the middle of analog recording, or log in to a secure system, all the steps including mouse movement, keystrokes, etc., will all be 
recorded.  However, note also that screen contents are not recorded by Rapise.
(6) If the TwoDialogs UI has been occluded, bring it back to the front so you don't have to hunt for it during recording.
(7) When you're ready to record the session, hit the Analog button on the Recording Activity dialog.
NOTE: The key sequence Ctrl+4 starts an absolute analog recording session.  Press the Analog button to start the relative analog recording session.
When you press the Analog button, two things will happen.  Firstly, the status bar of the Recording Activity dialog will change to read, "Click on object to start analog recording."

After the next mouse click, Rapise is recording all mouse and keyboard activity until you stop the recording.
Secondly, a minimized window will be created that indicates that analog recording is in progress and allowing you to stop the recording.

(7) Go to the TwoDialogs AUT and click anywhere in the application's window to start the analog recording.
Click the mouse on the empty "Please enter your name" text box.
Type a name in the text box.
Hit the <tab> key or click the left mouse button to advance the input position to the second text box.
Type another name.
Move the mouse to the OK button and press the mouse left button.

(8) When you have recorded enough, switch to the Analog Recording dialog box and press the close button or press the key sequence Ctrl+Break.  If you use the "close" button on the Analog Recording 
dialog, the movement of the mouse to the Analog Recording dialog, and the mouse-click on the Close button will be recorded as part of the analog recording output.  This might not be a desirable 
outcome at playback time because the Analog Recording dialog will not be present and the mouse click will be played in a potentially random place on the screen.  For thjis rason, Ctrl+Break is probably 
a better option to terminate analog recording.
NOTE: The grid will have no entry added until you end the analog recording with the Close button in the Analog Recording dialog.  When you do, it will add an entry to the grid.

Page 68 of 783/29/2012



(9)   You can now record additional analog sessions if you wish.
(10) You can record normal object activity before and/or after the analog recording.  When you have finished all recording press the Finish button or hit Ctrl+3.
(11) The Rapise screen will now be restored and will have placed focus in the editor pane of the Rapise with TwoDialogsAnalogAbsolute.js scrip displayed.  You should see code something like the 
following:

//Plays recorded events from "Analog\Analog0003.arf" file
SeS('Simulated').DoAnalogPlay("Analog\\Analog0003.arf");

(12) Press the Play button on the Rapise toolbar to playback the recording you made.  Be sure not to interfere with the mouse or keyboard whilst the recording is playing back.
NOTE: You will see all mouse and keyboard activity reproduced as the analog recording plays.  The recording will start from the point where you left-clicked the mouse to begin the recording (step 7 
above) and will end with clicking the close button in the Analog Recording dialog.  If you used Ctrl+Break to end the recording then the last recorded activity will be the one that keystroke.
(13) When the analog playback is complete, use the mouse to move the Two Dialogs AUT to a different location on the screen.  Play the recording again, and watch the operation unfold.  The most 
important thing to realize is that the relative analog recording will playback the recording wherever the application is positioned on the screen.  This is because you used relative analog recording. 
 However, once the recording within the AUT is complete, all mouse motion and keyboard strokes are relative to the current position of the AUT.  Suppose that during analog recording, you click the OK 
button in TwoDialogs.exe, then move the mouse to terminate the recording using the analog recording Close button.  Now, prior to playback, you move the AUT to a different location on the screen and 
hit playback.  All the activity within the AUT will be faithfully reproduced.  However, the mouse motion outside the AUT will be relative to the position, so the following activities will not be accurately 
reproduced.  Try this for yourself, but be sure to minimize all applications before starting so you don't cause mouse events where they will do harm to other applications on the screen.

Learn an Object Top Previous Next

To illustrate learning an object, we return to the TwoDialogs sample.
First, let's learn the OK button using recording.  We have done this before in the TwoDialogs sample.
Steps:
(1) Run TwoDialogs sample AUT.  By default this will be located in C:\Program Files\Inflectra\Rapise\Samples\TwoDialogs\TwoDialogs.exe
(2) Start Rapise and create a new test and call it TwoDialogsRecording.
(3) Press the Record/Learn button in the toolbar of Rapise.
(4) When the "Select an Application to Record" dialog is displayed, choose the TwoDialogs.exe application and in the library list, select only the top library on the list - "Auto."  Press the Select button.
(5) In the TwoDialogs AUT, use the mouse to press the OK button.  Dismiss the alert message box complaining about the empty name.
(6) Notice that two things will happen.  Firstly, the OK button will be surrounded with a red marker, indicating that the OK button has been learned.  Secondly, the action of clicking the OK button is 
recorded in the Recording Activity dialog.  That recording has a single entry.:

(7) Press the Finish button (or press Ctrl+3) to end the recording.
(8) Rapise will return to be the foreground application, and it will have selected the TwoDialogsRecording.js (or whatever name you gave the test when you created it).
(9) Notice that there is a single line or script that has been added to the script file:

SeS('OK').DoAction();
This line of script has two interesting parts.
The "SeS('OK') is the identity (not the locator or location) of the OK button.  This is the object that was learned during recording.
The "DoAction()" is the instruction to the running script to take the action associated with a button.  A normal button has only a single possible action - to be pressed.
The Record/Learn process has taken both steps for you, and joined them together.

Now, let's use (normal) object learning to learn the same OK button and to call a method for the object.
Steps:
(1) Run TwoDialogs sample AUT.  By default this will be located in C:\Program Files\Inflectra\Rapise\Samples\TwoDialogs\TwoDialogs.exe
(2) Start Rapise and create a new test and call it TwoDialogsLearn.
(3) Press the Record/Learn button in the toolbar.
(4) When the "Select an Application to Record" dialog is displayed, choose the TwoDialogs.exe application.  Leave the library selection in its default state - we will not be using it this time.  Press Select. 
 Wait for the Recording Activity dialog to appear in the lower-right corner of the screen.
(5) Hover the mouse over the OK button of the TwoDialogs AUT but do not press the button.
(6) With the mouse positioned over the OK button, press Ctrl+2 ( the "Learn" command).  You will see the OK button surrounded with a red highlight.  You will also see that the Recording Activity dialog 
has been updated with a Learn event.

Page 69 of 783/29/2012



(7) Press the Finish button or Ctrl+3 to end the recording session.  You will now see that Rapise has "learned" about the OK button, and the Object Tree in the upper left-hand pane of the Rapise has a 
new entry called "OK" (shown here expanded).  The list of items contained under the OK button entry in the Object Tree is the set of methods and properties available for the OK object.  Methods are 
listed with purple icons, read properties are listed with blue icons, and write properties are listed with blue and purple icons.  Notice that the DoAction property is listed and recall in the previous section 
when we recorded pressing the button, the DoAction method was chosen for the button-press action.

(8) While we are looking at this OK object, let's make a few observations about it.  These observations will be useful for your later dealings with Rapise and will make the script more informational and 
relevant as you delve into Rapise.  First, look down at the Properties box that appears under the Object Tree in the bottom left corner of the Rapise screen.  The screenshot below has some of the tree 
nodes expanded.

Page 70 of 783/29/2012



First, notice that the OK button has four (4) "locators" defined.  When you have Rapise "learn" an object. it must collect data about that object so that it can relocate it even if the application has moved 
on the screen, and even if the application is in a different state of execution.  In order to accomplish this, Rapise looks for all useful ways to uniquely identify the object.  As bad, or perhaps worse, than 
not being able to find an object would be to find the wrong object on the AUT.  Every time Rapise is required to locate this object, it will first try to use the first locator.  If it fails to positively and uniquely 
match with that locator, it will try the second, and so on.  Rapise will not give up and declare failure until it has failed to identify with all available locators.

Second, notice the ID entry in the Object section of the pane.  This is the name of the object from Rapise's perspective.  All Rapise names are available through the SeS() function call.  Therefore, if we 
want to refer to the "OK" object, we will use SeS("OK") to refer to it.  Once we have correctly identified the object, all valid methods and properties can be accessed by using that object as the basis.

Thirdly, notice in the main editor window of the Rapise, that no code has been added.  When you identified the OK button, all Rapise did was add the new object to the Object Tree.  It did not write any 
code in the javascript file.
(9) In the automated (recorded) section above, you saw that when you pressed the OK button on the dialog, Rapise recorded a function like this:

SeS("OK").DoAction();
This time, you will use the established name of the OK button object, but do something a little more interesting than its default action to demonstrate how to use Rapise.
(10) Move the cursor into the editor part of the Rapise and make sure you are editing the file called TwoDialogsLearn.js.  At the moment, this file still looks something like this:

//########## Script Steps ##############

function Test()
{

}

g_load_libraries=["Generic"];
Between the open and close brace, add the following command:

SeS("OK").DoClick();
Hit the Play button and watch what happens.
The click will register as a command to the object and it will perform the action on the object.

While we have the context of this situation, let's complicate it just a little more to illustrate the intricacy as well as the flexibility of Rapise and SeS.
There is a method whose names looks interesting: DoLButtonDown().
If we were to invoke DoLButtonDown() on the "OK" object, we would expect this would be the same as DoClick().
However, go back to the AUT for a moment.  Using the mouse, press the left mouse button over the OK button but don't take your finger off the left mouse button.
What happens is that the button takes its pressed state in appearance, but the button is not clicked.
The reason for this is that the DoClick() (or DoAction()) events cause the mouse button top be clicked as well as released.
Therefore, we would need to have a pair of events:

SeS("OK").DoLButtonDown();
SeS("OK").DoLButtonUp();

in order to make the "click" happen.
Try this in the test script you have created by adding those two lines of code in place of the DoClick() line.
It doesn't work!
Let's play a little with this problem.
When you press the Play button, leave the mouse alone.  Just press the left mouse button on the Rapise Play button and take your hand away from the mouse.
The script does not press the OK button in the TwoDialogs AUT.
Now, press the Play button on the Rapise and quickly move the mouse to hover over the OK button in the TwoDialogs AUT.
Now it works!

What's going on here is that the DoLButtonDown() and DoLButtonUp() methods are pressing the mouse irrespective of where the mouse cursor is positioned.
The other functions, DoClick and DoAction are methods that are applied to the button and so they are applied to the button.
Before we can expect DoLButtonDown() and DoLButtonUp() methods to work, we have to first the mouse cursor to the button.

function Test()
{

SeS("OK").DoMouseMove(25, 15);
SeS("OK").DoLButtonDown();
SeS("OK").DoLButtonUp();

}
will accomplish that.
Notice that Rapise will actually move the mouse to the coordinates (25, 15) within the OK button.  Also notice that if you move the mouse while the test is playing, you will make the test fail.

As a last experiment in this arena, try moving the mouse outside the boundaries of the OK button object before calling the DoLButtonDown() function.
function Test()
{

SeS("OK").DoMouseMove(250, 150);
SeS("OK").DoLButtonDown();

Page 71 of 783/29/2012



SeS("OK").DoLButtonUp();
}

Once again, the script will fail.

Deal with a Simulated Object Top Previous Next

Example: The toolbox of Microsoft's Paint utility (c:\windows\system32\mspaint.exe) is a compound object that contains custom buttons and is surrounded by a containing box.  To understand this 
completely, start mspaint.exe from the Rapise.
Steps:
(1) Open a new test under Rapise.
(2) Press the Record/Learn button on the application bar.
(3) When the "Select an Application to Record" dialog appears, select the Run Application tab.  Enter mspaint in the "Full path to application" edit box.  Press the Run button.
If you are unfamiliar with MS Paint, take a few minutes to play with it.
In particular, notice the toolbox that appears in the upper-left margin of the utility and the colour selection box that appears on the bottom-left of the application window.
(4) Press Ctrl+5 to spy on the UI.  Press Ctrl+G to spy on the Paint application.  Notice several things about the behaviour of the MS Paint applciation under SesSpy.

(i) As you move the mouse inside the tools box, the entire surrounding box will show a red highlight but the individual tool buttons will not.
(ii) The same is true of the colour palette and the bottom-left of the screen.
(iii) As you move the mouse over the apparent buttons and controls, the information in the spy dialog is more sparse than for other applications.  The tool buttons do not have default actions, and 
they are not identified as buttons.  Rather they are identified only as "child" objects.

This combination makes it impossible for Rapise to identify and learn the objects as integral objects.
Furthermore, notice that as you change the size of the Paint window, the relative positions of the colour palette and the tool box change.

The only way in which Rapise can be 'taught' these controls (and others we will discover later) is by "simulating" them as though they were buttons that can accept commands such as the press event.

In fact, Rapise will recognize these non-objects without you having to take particular action.  Let's discover this and what it means:
(1) Open a new test under Rapise; call it MSPaint.
(2) Press the Record/Learn button on the application bar.
(3) When the "Select an Application to Record" dialog appears, clear all selection boxes in the library list box.  You will have to scroll that section of the dialog box to make sure all selections are clear. 
 We are choosing no loaded libraries so that Rapise will not be able to "cheat" and know about any objects on the screen.
(4) select the Run Application tab.  Enter mspaint in the "Full path to application" edit box.  Press the Run button.
(Applications that reside in C:\windows\system32 can be started by their names because C:\windows\system32 must be in the system path.)
(5) When the Recording Activity dialog is displayed, press Learn (Ctrl+2)
(6) Do a small amount of things in Paint.  For example:

(i) Click on the light-grey colour in the palette.
(ii) Click on the tipping paint-can (Fill with colour).
(iii) Click on the empty canvas.
(iv) Click on the red colour in the palette.
(v) Click on the "A" tool (Text).
(vi) Click in the canvas and type a few characters, such as "Hello."
(vii) Click in a blank place under the tool button.

(7) Look at the Recording Activity dialog grid.  It will be something like this:

Notice that the two clicks in the canvas were recorded as "simulated" objects.
Notice also that the two pairs of clicks in the tools and colours sections were recorded as LClick (left click) in "Tools" and "Colors".  However, there are no objects by these names.  To find out where 
these pseudo objects came from, we need to look in the file MSPaint.objects.js (the name will be the name you gave the test project).  The following excerpt from the MSPaint.object.js shows the start of 
the definition of the "Colors" object:

Page 72 of 783/29/2012



(8) Press Ctrl+3 to end the recording.

Technologies Top Previous Next

This section focuses on specific technologies supported by Rapise.

Adobe Flex Top Previous Next

Purpose
Rapise includes support for Adobe Flex applications executed

Usage
To test Flex applications, you must have Flex Builder installed.  Link your application with FlexAdapter.swc (part of Rapise) and automation_agent.swc and automation.swc (part of Flex Builder).

The compiler arguments should look like:

-include-libraries "C:/Program Files/Adobe/Flex Builder 3/sdks/3.2.0/frameworks/libs/
automation_agent.swc" "C:/Program Files/Adobe/Flex Builder 3/sdks/3.2.0/frameworks/libs/
automation.swc" "C:/Program Files/Inflectra/Rapise/Extensions/Flex/FlexAdapter/bin/FlexAdapter.swc"

Note: You may avoid linking with third-party libraries if your application is browser-based and you will use FlexLoader.

Adobe Flash Player
Adobe Flash Player has restricted security settings for SWFs opened from the file system. To enable testing of such SWFs, their corresponding folders must be listed in the FlashPlayerTrust directory. 
 You can find the FlashPlayerTrust directory here:
<system>\Macromed\Flash\FlashPlayerTrust

to enable testing just for the current user, use this FlashPlayerTrust directory:
<ApplicationData>\Macromedia\Flash Player\#Security\FlashPlayerTrust

To register your SWF just create a file with the name "<name of your SWF>.cfg" and put it in this directory. In the file, write a path to the SWF folder.

Note: If you do not have FlashPlayerTrust directory in one of locations listed above then you will have to create missing directories yourself.

Adobe AIR
To record and playback tests for Adobe AIR application you need to run the application manually. E.g.:

"C:\Program Files\Adobe\Flex Builder 3\sdks\3.2.0\bin\adl.exe" C:\Program Files\Inflectra\Rapise\Samples\AdobeFlex\AUTFlexAIR\bin-debug\AUTFlexAIR-app.xml

Sample Applications and Test
Two sample Flex applications are available with the Rapise installation.   They can be found at <Rapise install dir>/Samples/AdobeFlex/AUTFlexFP/bin-debug/AUTFlexFP.html and <Rapise install 
dir>/Samples/AdobeFlex/AUTFlexAIR/bin-debug/AUTFlexAIR-app.xml. The binaries and source are both provided. 

Sample test for the sample applications can be found in <Rapise install dir>/Samples/AdobeFlex. To select the target for testing edit the following line in AdobeFlex.user.js file:

/**
 * Select flex target for testing.
 */
var testTarget = "FlexIE"; //"FlexAIR", "FlexFirefox", "FlexIE"

Note: If you choose AIR target, please, do not forget to run the sample application before executing the test.

See Also

inside Adobe Flash Player in Internet Explorer or Firefox
and Adobe Integrated Runtime (AIR).

Tutorial: Testing Adobe Flex Applications

Cross Browser Testing Top Previous Next

You can run your recording in a different browser than the one in which it was recorded.  You can also run the recording in multiple browsers in succession.  Both options require modification of the 
script.  The necessary modifications are described below.

Page 73 of 783/29/2012



Selecting a new Playback Browser
First, open the script for your test using the Test Files Dialog.  Locate the line where g_load_libraries is initialized. 

If you recorded your script in IE you will see:
g_load_libraries=["Internet Explorer HTML"];

If you recorded it in Firefox, you will see:
g_load_libraries=["Firefox HTML"];

Erase the current library name (Firefox HTML or Internet Explorer HTML) and replace it with the other option. Playback the script normally. 

Playback in Multiple Browsers
Executing a test in multiple browsers is slightly more complicated. We recommend to use sub-tests to properly organize the multi-browser testing.

As a result you have a test for 2 browsers: IE an Firefox. Each browser is defined by a library in a corresponding sub-test. Rapise contains Cross Browser sample using this approach.

1. Record base test. Put all the recorded actions into a User-defined function and place it into <testname>user.js file. For example, function Login() inside file MyTest.user.js.
2. Create Sub-Test for IE re-using objects and functions from the base test
3. Modify script file in sub-test as follows:

function Test()
{

// Re-use 'Login()' scenario from parent test
 Login();

}

g_load_libraries=["Internet Explorer HTML"];

4. Create Sub-Test for Firefox re-using objects and functions from parent test
5. Modify script file in subtest as follows:

function Test()
{

// Re-use 'Login()' scenario from parent test
 Login();

}

g_load_libraries=["Firefox HTML"];

Qt Framework Top Previous Next

Purpose
Rapise includes support for testing applications written using the Qt Framework written using QWidget controls. 

Usage
Rapise fully supports the test automation of Qt based applications. To ensure that Rapise can access the UI elements and properties in the Qt application, MSAA (Microsoft Active Accessibility) support 
for your Qt application must be enabled. This provides additional information on Qt UI elements to automation software like Rapise and can be accomplished by shipping and loading the "Accessible 
Plug-in" included in the Qt SDK (Software Development Kit) with the Qt application under test (see below).
Loading Accessible Plug-in for your Qt application:
1. Copy the "accessible" directory (and all its contents) from the Qt SDK (used to build the application under test) installation folder to the folder of the automated application (e.g. “Program 
Files/Your-Application/plugins”). If you do not have access to the Qt SDK which the Qt application is developed with, please contact the developer of the application and request the "accessible" 
directory from him.
2. Create a file called "qt.conf" (or append if the file already exists) in the root directory of the automated application (e.g. "Program Files/Your-Application") with following content (copy and paste the 
following two lines):
[Paths]
Plugins = plugins

Extensibility Top Previous Next

The Extensibility section is for experienced Rapise users who want to extend capabilities of the tool.

Tutorial: Custom Library Top Previous Next

In this section, you will learn how to create a Custom Library and add support for a third-party GUI control to Rapise.  We will be using a demo application called CustomControlApp. Our Custom Library 
 will be simple.  It will allow to  Record and Learn objects of CustomListboxControl type and also Playback actions for this type of objects. This tutorial is complemented by a ready test CustomControlTest
which you'll be able to examine and run.

Tutorial Data

If you prefer active experimentation learning style you may first skip to subsection 9 and after playing with the ready test and library start reading from the beginning. 

CustomControlApp contains an object of type CustomListboxControl. The control is similar to a single-select listbox, but each line item has a corresponding progress bar indicator indicating a current 
value. Using the left/right cursor keys you can change the value of the currently focused item.

CustomControlApp folder: C:\Program Files\Inflectra\Rapise\Samples\Extensibility\CustomLibrary\CustomControlApp. You may build this application yourself in Microsoft Visual Studio (C++) or use 
ready executable: <CustomControlApp folder>\Release\CustomControlApp.exe
CustomControlTest folder: C:\Program Files\Inflectra\Rapise\Samples\Extensibility\CustomLibrary\CustomControlTest
CustomLibrary file: C:\Program Files\Inflectra\Rapise\Samples\Extensibility\CustomLibrary\CustomLibrary.js

1. Application Under Test

Page 74 of 783/29/2012



If you will try to record a test for CustomControlApp using just Generic library you'll see that CustomListboxControl is treated as Simulated Object and all interactions with it are recorded as mouse clicks 
and key presses. For some tests such functionality is sufficient, but if you want to be able to recognize CustomListboxControl as a list, get its items, select an item by name, set value for a particular item 
you need to create a Custom Library.

A good place to start implementing a Custom Library is empty LibUser library included into Rapise. All Rapise libraries live in C:\Program Files\Inflectra\Rapise\Engine\Lib folder and LibUser is not an 
exception. LibUser library consists of two files:

Open Engine.sstest project in Rapise. Then find LibUser.js in the project tree and open it. You are about to start implementing a Custom Library to support CustomListboxControl.

Launch CustomControlApp and open Spy. Spy on CustomListboxControl. It is easy to see that CustomListboxControl has the following accessibility tree: ROLE_SYSTEM_WINDOW top node contains 
ROLE_SYSTEM_LIST child that in its turn may contain zero to many ROLE_SYSTEM_SLIDER nodes.

2. LibUser

1. C:\Program Files\Inflectra\Rapise\Engine\Lib\LibUser.jslib which is a library declaration file.
2. C:\Program Files\Inflectra\Rapise\Engine\Lib\LibUser\LibUser.js which is a library definition file.

3. Open Engine.sstest 

4. Analyze CustomListboxControl in Spy

Page 75 of 783/29/2012



With knowledge of CustomListboxControl accessibility tree we can create a matcher rule that will make CustomListboxControl recognizable by Rapise. Write the following code into LibUser.js:
new SeSMatcherRule(
{
    object_type: "CustomListboxControl",
    object_flavor: "List",
    behavior: [Win32ItemSelectable, Win32CustomListboxControl],
    role: "ROLE_SYSTEM_WINDOW",
    or_rules: [
        {
            role: "regex:ROLE_SYSTEM_LIST",
            save_to: "list",
            or_rules: [
                {
                    role: "ROLE_SYSTEM_SLIDER",
                    zero_to_many: true,
                    save_to: "items"
                }
            ]
        }
    ]
});

Each matcher rule (instance of SeSMatcherRule) is a tree like structure that describes a particular GUI control type. Each node in this tree is a rule object that is defined by the following simplified 
grammar:

or_rules: (rule)+
and_rules: (rule)+

rule: 
    role
    [save_to]
    [zero_to_many]
    [or_rules]
    [and_rules]

After defining the matcher rule we can proceed to behavior patterns. Behavior patterns operate with SeSObject contents, so they should not be aware about accessibility tree of the underlying GUI control 
and thus the same behavior pattern can be assigned to different matcher rules. There are a plenty of behavior patterns defined in SeSBahavior.js. After looking at those patterns it is possible to notice 
that Win32ItemSelectable pattern is the one that perfectly suites for capturing selection accessibility events and for selecting list items. This pattern contains OnSelect event that is called during recording 
when an item is selected in list and DoSelectItem action used to select desired item during playback.

But using just Win32ItemSelectable behavior pattern is not sufficient. It does not support recording of progress bar value change events and it does not support setting progress bar value during 
playback. That is why we need to define new behavior pattern: Win32CustomListboxControl. Look at its code:

var Win32CustomListboxControl = 
{
    actions: [
        {
            actionName: "SetItemValue",
            DoAction: function(/**String*/ itemName, /**Number*/ value)
            {
                var item = this.findItemByName(itemName);
                if(null!=item)
                {
                    item.getTopObject().instance.HWND.SetForegroundWindow();
                    item.instance.Value = value;
                    return true;
                }
                return false;
            }
        },
        {
            actionName: "GetItemValue",
            DoAction: function(/**String*/ itemName)
            {
                var item = this.findItemByName(itemName);
                if(null!=item)
                {
                    return item.instance.Value
                }
                return null;
            }

5. Create Matcher Rule for CustomListboxControl

object_type: the string that uniquely identifies this matcher rule and designates type of the control
object_flavor: visual type of the control, it is used to show an appropriate icon in the Object Tree and to filter actions and properties in composite behavior patterns (like in Adobe Flex, see 
FlexActions.js)
behavior: array of behavior patterns that define object actions, properties and events.
role: accessibility role of the corresponding node in the accessibility tree of the control. The role equals to a Role of the accessible element as displayed in the Spy.
or_rules: array of rules (defining child nodes) joined with logical OR. Any OR rule can be satisfied to consider child nodes matched.
and_rules: array of rules (defining child nodes) joined with logical AND. All AND rules must be satisfied to consider child nodes matched.
save_to: SeSObject created for accessibility tree node corresponding to this rule is assigned to the field with "save_to" name of the top level SeSObject. I.e. if rule has save_to: "items" element then 
you can access learned element using SeS('ObjID').items. In many cases such named fields are used in behavior patterns.
zero_to_many: if this property is present in the rule and set to 'true' then it means that parent rule may contain from zero to many of child nodes that match this rule.

6. CustomListboxControl Behavior

Page 76 of 783/29/2012



        }
    ],
    events:
    {
        OnValueChange: function(/**SeSObject*/ param)
        {
            var itemName = param.name;
            if(l2)Log2("OnValueChange:"+itemName);
            var item = this.findItemByName(itemName);
            if(null!=item)
            {
                var value = item.instance.Value;
                RegisterAction(this, param.name, "SetItemValue", parseInt(value), "Set item:'"+param.name+"' to "+value+" in '"+this.name+"'");
            }            
            return;
        }
    }
};

During recording process OnValueChange function captures progress bar change events and calls RegisterAction function that adds SetItemValue action to the test.

What accessibility events are fired when user changes progress bar value? Use Spy to find out. Launch CustomControlApp and open Spy window. Spy on CustomListboxControl. Choose Monitor 
Events...

You will see Accessible Events dialog:

Select an item in CustomControlApp and advance its progress bar using right key. Accessible Events dialog will show you captured events:

You can see that changing progress bar leads to generation of EVENT_OBJECT_VALUECHANGE events.

Not all accessibility events a processed and propagated by Rapise engine. EVENT_OBJECT_VALUECHANGE is one of such events. To consume this event and make an appropriate call to 
 OnValueChange of Win32CustomListboxControl you need to add and register custom accessibility event handler:

function CustomRegisterAccessibleEvent(evt, etxt)
{

7. CustomListboxControl Specific Accessibility Events

Page 77 of 783/29/2012



    if(etxt.indexOf("EVENT_OBJECT_VALUECHANGE")>=0)
    {
        var ao;
        try
        {
            ao = evt.AccessibleObject;
            if(!_SeSisValidObject(ao)) return false;
        }
        catch(e)
        {
            Log("Error getting event object:"+e.Description+"/"+etxt);
            return false;
        }

        var ro = SeSCacheAccessibleObject(ao);
        if (l3 && ro) Log3("CustomListboxControl: " + ro.toString());

        if (ro != null && ("OnValueChange" in ro))
        {
            ro.OnValueChange();
        }

        return true;
    }
    return false;
}

g_customEventHandlers.push(CustomRegisterAccessibleEvent);

8. Record and Playback
Now you are ready to record and playback a test. Just remember that in Select an Application to Record dialog you need to uncheck Auto library and select User and Generic libraries.

This tutorial is complemented by a ready test CustomControlTest which you can examine and run. Open CustomControlTest in Rapise and place contents of CustomLibrary file into LibUser.js file 
(C:\Program Files\Inflectra\Rapise\Engine\Lib\LibUser\LibUser.js). LibUser.js is added to CustomControlTest, so you can populate it with CustomLibrary code right in Rapise.

Tip: It is possible to launch CustomControlApp right from Rapise, just double click on CustomControlApp.exe in the project tree.

10. Wrap-up: Implementation Sequence
Full support for a custom object requires support for Record, Learn and Playback. Let's go over created library and specify the purpose of each component in it.

9. CustomControlTest

Matcher Rule:- it is used to recognize the object inside an application, required for Record, Learn and Playback.
Events in Behavior Patterns: handling events is required for Record.
Actions in Behavior Patterns: actions are used to examine or change state of the control, required for Playback.
Custom Accessibility Event Handler: required for Record if some important events are not processed by Rapise engine as needed.

Page 78 of 783/29/2012



 

 
Page 2 of 2 © Copyright 2006-2012, Inflectra Corporation This document contains Inflectra proprietary information 

Legal Notices 
This publication is provided as is without warranty of any kind, either express or implied, including, but not 
limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. 

This publication could include technical inaccuracies or typographical errors. Changes are periodically 
added to the information contained herein; these changes will be incorporated in new editions of the 
publication. Inflectra Corporation may make improvements and/or changes in the product(s) and/or 
program(s) and/or service(s) described in this publication at any time. 

The sections in this guide that discuss internet web security are provided as suggestions and guidelines. 
Internet security is constantly evolving field, and our suggestions are no substitute for an up-to-date 
understanding of the vulnerabilities inherent in deploying internet or web applications, and Inflectra cannot 
be held liable for any losses due to breaches of security, compromise of data or other cyber-attacks that 
may result from following our recommendations. 

Rapise® and Inflectra® are either trademarks or registered trademarks of Inflectra Corporation in the 
United States of America and other countries. All other trademarks and product names are property of 
their respective holders. 

 

Please send comments and questions to: 

Technical Publications 

Inflectra Corporation 

8121 Georgia Ave, Suite 504 

Silver Spring, MD 20910-4957 

U.S.A. 

support@inflectra.com 

 

mailto:support@inflectra.com

	Legal Notices

